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Abstract

How should one use (quasi-)experimental evidence when choosing policies such as tax rates, health
insurance copay, unemployment benefit levels, class sizes in schools, etc.? This paper suggests an ap-
proach based on maximizing posterior expected social welfare, combining insights from (i) optimal policy
theory as developed in the field of public finance, and (ii) machine learning using Gaussian process priors.
We provide explicit formulas for posterior expected social welfare and optimal policies in a wide class of
policy problems.

The proposed methods are applied to the choice of coinsurance rates in health insurance, using data
from the RAND health insurance experiment. The key trade-off in this setting is between transfers
towards the sick and insurance costs. The key empirical relationship the policy maker needs to learn
about is the response of health care expenditures to coinsurance rates. Holding the economic model and
distributive preferences constant, we obtain much smaller point estimates of the optimal coinsurance rate
(18% vs. 50%) when applying our estimation method instead of the conventional “sufficient statistic”
approach.
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1 Introduction

How should empirical evidence be used to determine the optimal level of policy parameters such as tax rates,

unemployment benefits, health insurance copay, or class sizes in school? A standard approach, labeled the

“sufficient statistic approach” by Chetty (2009), uses the data to estimate a key behavioral elasticity, and

then plugs this elasticity into formulas for optimal policy levels that are based on elasticities at the optimum.

In this paper, an alternative approach is proposed and implemented in the context of choosing coinsurance

rates for health insurance.1

Setup This paper takes the perspective of a policy maker who wants to maximize some notion of social

welfare. We assume that the policy maker observes (quasi-)experimental data that allow her to learn about

some behavioral relationship that is relevant for her decision. We assume further that the policy maker acts

as a Bayesian decision maker. This assumption implies that she uses the available data to form a posterior

expectation of social welfare given each possible policy choice, and that she chooses the policy that maximizes

this posterior expectation.

The imposition of some additional structure allows us to derive explicit analytic solutions to the policy

maker’s problem. In Section 2 we assume that social welfare takes a form common to many problems in

public finance, where the key trade-off is between a weighted sum of private utilities and public revenues.

The empirical relationship that the policy maker needs to learn in these settings is the response of the tax

base to tax rates, or of insurance claims to coinsurance rates. In Section 3 we consider Gaussian process

priors for this behavioral relationship. The combination of the structure of the objective function and the

structure of these priors implies that we can explicitly derive and characterize posterior expected social

welfare. In contrast to the sufficient statistic method as discussed in Chetty (2009), our approach does not

rely on extrapolation using log-linear functional form assumptions, and it takes uncertainty into account.

The difference matters in practice, as we will see.

Contributions of this paper This paper contributes to the literature in several ways. First, for empirical

researchers working on issues of public policy, this paper leverages the statistical insights of a well developed

literature on machine learning using Gaussian process priors, spline regression, and reproducing kernel Hilbert

spaces. This paper provides a simple framework to derive optimal policy choices given available data. The

practical relevance of such a framework is demonstrated by our empirical application, where we find very

different levels of optimal policy relative to those suggested by a conventional estimation approach (leaving

the economic model and distributive preferences the same). Second, for statistical decision theorists, this

paper suggests a class of objective functions (“loss functions”) for statistical decision problems that have

a substantive justification in economic theory, and which contrast with conventional loss functions such as

quadratic error loss or mis-classification loss. Third, for practitioners of machine learning, this paper suggests

a class of applications of machine learning methods where new predictive procedures might fruitfully be

1The coinsurance rate is the share of health care expenditures that the insured have to pay out of pocket.
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leveraged for problems other than prediction.

Application In Section 4 the proposed approach is applied to the problem of setting coinsurance rates

in health insurance. Lowering coinsurance leads to more redistribution from healthy contributors to those

in need of health care. But it also increases insurance costs, both mechanically and through the behavioral

response of possibly increased health care spending. We use data from the RAND health insurance experi-

ment in order to estimate this behavioral response. We then use the estimated relationship to determine the

optimal coinsurance rate. We find an optimal coinsurance rate of 18%. This contrasts markedly with the

optimal coinsurance rate of 50% suggested by the conventional sufficient statistic approach under otherwise

identical assumptions. Both of these numbers are based on the (arbitrary) normative assumption that the

marginal value of a US$ for the sick is 1.5 times the marginal value of a US$ for the insurance provider.2 For a

range of alternative assumptions about this relative marginal value we find the same qualitative comparison.

Technical perspective From a statistical perspective, the key features of our setting are as follows: (i)

The decision maker’s objective function is given by a known affine operator applied to an unknown causal

relationship. The affine operator may involve operations such as integration, differentiation, multiplication

by known functions, etc. (ii) (Quasi-)experimental variation of policy-parameters allows one to equate the

relevant causal relationships to predictive relationships. (iii) A Gaussian process prior for these predictive

relationships is used.

The combination of these features implies a tractable linear mapping with known weights from observed

outcomes to the posterior expected social welfare function and its derivative, which in turn determine the

expected welfare maximizing policy choice. This is sketched for the general case in Appendix B. Explicit

weights for our application are derived in Appendix C. Given symmetry and unimodality of the posterior,

the posterior expectation of the predictive relationship can also be written as a maximum a posteriori, or

equivalently, as the solution to a penalized least squares regression. The penalty is equal to the reproducing

kernel Hilbert space norm corresponding to the prior covariance kernel. Spline regression is a special case; cf.

Wahba (1990) and van der Vaart and van Zanten (2008). Approximating the sample distribution of predictors

by their population distribution yields an equivalent kernel representation for the weights mapping outcomes

into welfare, as sketched in Appendix D; cf. Silverman (1984).

The social welfare function objective for a broad class of policy problems in public finance takes the form of

an affine operator applied to behavioral relationships. Key reasons for this are the assumptions that (i) social

welfare is a weighted sum of private utilities, (ii) individuals maximize their utility subject to constraints,

and (iii) their choices generate no externalities. Under these assumptions the effect of behavioral responses

to marginal policy changes on private welfare can be neglected, due to the envelope theorem reviewed in

Appendix A, simplifying the form of social welfare.

2The choice of such welfare weights based on normative considerations is discussed in Saez and Stantcheva (2013).
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Literature This paper draws on two distinct literatures, (i) optimal policy theory as discussed in the field of

public finance, and (ii) statistical decision theory and machine learning using Gaussian process priors. Models

of optimal policy in public finance have a long tradition going back at least to the discussion in Samuelson

(1947) of social welfare functions, with classic contributions including Mirrlees (1971) and Baily (1978). The

empirical implementation of such models using “sufficient statistics” is discussed in Chetty (2009) and Saez

(2001). Gaussian process priors and nonparametric Bayesian function estimation are discussed extensively

in Williams and Rasmussen (2006). Gaussian process priors are closely related to spline estimation and

reproducing kernel Hilbert spaces, as discussed in Wahba (1990). When controlling for covariates we also

make use of Dirichlet process priors, which are reviewed in Ghosh and Ramamoorthi (2003).

Road map The rest of this paper is structured as follows. Section 2 briefly reviews the theory of optimal

insurance and optimal taxation, and reformulates the solution to these problems in a form amenable to

our approach. Section 3 states our assumptions on the data generating process and the prior. We then

derive simple closed form expressions for posterior expected social welfare and for the first order condition

characterizing the optimal policy choice. Section 4 applies the proposed approach to data from the RAND

health insurance experiment and provides estimates of the optimal coinsurance rate. Section 5 discusses a

number of extensions of our framework, including conditional exogeneity, optimal experimental design for

policy, and an alternative class of social welfare functions involving production. Section 6 concludes. The

appendix discusses technical details, including the envelope theorem, a generalization of our setup involving

affine operators, explicit weight functions for our application, and approximations using equivalent kernel

weights.

2 Optimal insurance and optimal taxation

Many policy problems considered in the field of public finance share a similar structure. We first describe this

structure in terms of the example of optimal health insurance, corresponding to the empirical application

considered in Section 4 below. We then discuss how other policy problems, in particular optimal taxation,

can be described in the same terms. A more detailed discussion of some of the ideas introduced in this

section can be found in Chetty (2009).

The key takeaway of this section is equation (4). This equation is a reformulation of standard represen-

tations of social welfare. This representation is chosen such that it is amenable to our subsequent analysis

using Gaussian process priors. Our approach is contrasted with more standard approaches using “sufficient

statistic” formulas for optimal policy parameters in the context of the application in Section 4.

In the health insurance policy problem considered, the trade-off between two objectives (increasing insur-

ance/redistribution versus lowering the cost to the provider) determines the optimal coinsurance rate. The

key empirical ingredient informing the policy maker’s choice is the behavioral response of health care usage

to changes of the coinsurance rate.
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Setup The insurance covers a population of insured individuals i. Let Yi denote the health care expendi-

tures of individual i, and let Ti denote the share of health care expenditures covered by the insurance, so

that 1−Ti is the coinsurance rate faced by individual i, and Yi · (1−Ti) are her out-of-pocket expenditures.

Individuals might adjust their health care expenditures depending on the coinsurance rate they face. We

can capture this response by considering the structural function

Yi = g(Ti, εi). (1)

In this equation, εi captures unobserved heterogeneity which is assumed to be invariant under counterfactual

policies.3 Corresponding to this structural function we can consider the average structural function

m(t) = E[g(t, εi)]. (2)

In this equation, the expectation averages over the distribution of unobserved heterogeneity εi across the

population of insured individuals. The function m(t) describes the average level of health care expenditures

if all individuals were to face the policy level t. We assume that this function is differentiable.

Policy objective Given this setting, we can now describe how a marginal change of the policy t, when

applied to all of the insured, would affect the policy maker’s objectives. A marginal change dt of t affects

insurance expenditures in two ways, mechanically, and through individuals’ behavioral response. The in-

surance provider’s expenditures per person are given by t ·m(t). The mechanical effect of the change of t

on the provider’s expenditures, holding constant individuals’ health care expenditures, is given by m(t)dt.

This mechanical effect can be calculated by accounting, given the expenditures m(t). It does not require

estimation of a causal effect. The behavioral effect on expenditures is given by t ·m′(t)dt. This behavioral

effect poses the key empirical challenge. To calculate it we need to know the causal effect m′(t) of a change

in t on expenditures m(t).

The effect of the marginal change of t on the welfare of the insured is a subtler matter. There is again a

mechanical monetary effect proportional to m(t)dt, since the sick have to pay less for their health care when

t is increased. This effect can again be calculated by accounting. But what about the effect of behavioral

responses on private welfare? As it turns out these don’t affect private welfare under standard utilitarian

assumptions for a very general class of models; this includes models that allow for multiple behavioral

margins, dynamic choices, discrete choices, etc. This follows from the so-called envelope theorem. Appendix

A provides a brief discussion of this point; see also Milgrom and Segal (2002) and Chetty (2009).

To trade off between her two conflicting objectives, the policy maker has to decide on the marginal

value λ > 1 of an additional dollar transferred to the sick relative to the cost of an additional dollar of

expenditures. The parameter λ reflects both social preferences for redistribution to the sick, cf. Saez and

Stantcheva (2013), as well as private risk aversion to unforeseen health shocks; we will assume λ known for

3This structural function could equivalently be written in terms of potential outcomes Y ti = g(t, εi), so that Yi = Y
Ti
i .
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simplicity of exposition.4 Adding up the effects of a policy change on the welfare of the insured (weighted

by λ) and on provider revenues, we get the marginal effect of a change in t on social welfare,

u′(t) = (λ− 1) ·m(t)− t ·m′(t) = λm(t)− ∂
∂t (t ·m(t)). (3)

Integrating and imposing the normalization u(0) = 0 yields social welfare,

u(t) = λ

∫ t

0

m(x)dx− t ·m(t). (4)

This objective function is a variant of the classic “Harberger triangle,” where the latter corresponds to the

special case where λ = 1. The first-order condition for the optimal coinsurance rate t∗ when m(·) is known

is given by u′(t∗) = (λ− 1) ·m(t∗)− t∗ ·m′(t∗) = 0.

Formally equivalent policy problems There are many problems of optimal policy choice in public

finance which share a similar structure. One example is optimal unemployment insurance, as discussed by

Baily (1978) and subsequent papers. Chetty (2006), building on insights of Feldstein (1999), has argued that

a very general class of models of unemployment insurance lead to the same formulas characterizing optimal

benefits, which are in fact equivalent to the one derived above. In the context of unemployment insurance, t

would be interpreted as the level of unemployment benefits, and Y as the share of days spent unemployed in

a given time period by a given individual. λ is the relative value of additional income for the unemployed,

and m(t) is the unemployment rate given policy level t.

Optimal taxation problems such as optimal income taxation can also be reformulated in this way. An

example is the choice of the tax rate for the top tax bracket, as in Saez (2001). In this setting, t is the

top tax rate, and Y is the taxable income declared by an individual. λ is the marginal value assigned to

additional income for rich people relative to additional government revenues, and m(t) is the size of the tax

base in the top bracket.

A representation of the policy objective in the form of equation (4) is more generally possible in settings

which satisfy the following assumptions: The policy maker’s objective is to maximize a weighted sum of

private utilities. Individuals are maximizing utility. Policy choices (such as tax rates or replacement rates)

affect private choices. The government is subject to a budget constraint, or equivalently has alternative

expenditures and revenues which pin down the marginal value of government revenues. If there are no

externalities, these assumptions imply that the behavioral effects of policy choices on private welfare are

zero at the margin, due to envelope conditions. This implies that welfare under a given policy choice only

depends on some key behavioral relationship, for instance the tax base as a function of tax rates.

4In settings where λ is considered a parameter to be estimated, if it is estimated using data which are independent from
those considered below, then λ can be replaced by a posterior expectation λ̂ throughout. Our results continue to apply verbatim
for such settings.
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3 Experimental variation, Gaussian process prior, and posterior

Our discussion so far described social welfare u(·) and the optimal policy t∗ in terms of the true average

response function m(·) under counterfactual policies t. The function m(·) is not known to the policy maker

in general, however, so she has to use empirical evidence to form beliefs about this function. As a baseline

case, we discuss a randomized experiment.

Sampling and experimental variation Assume that we observe n i.i.d. draws of (Yi, Ti) from the

population of interest. Assume further that Ti was randomly assigned in an experiment, so that Ti is

statistically independent of the unobserved heterogeneity εi. These assumptions imply

E[Yi|Ti = t] = E[g(t, εi)|Ti = t] = E[g(t, εi)] = m(t). (5)

Assume next that Yi is normally distributed given Ti, with constant variance

Yi|Ti = t ∼ N(m(t), σ2). (6)

In Section 5 below we discuss extensions, including the case of conditional exogeneity of treatment Ti given

observables Wi, and the case of non-normal residuals Yi −m(Ti).

Prior The key empirical relationship that the policy maker of Section 2 has to learn is the average structural

function m(·). This function describes average health care expenditures given the coinsurance rate. We

assume that the policy maker has a prior for m(·) which takes the form

m(·) ∼ GP (µ(·), C(·, ·)), (7)

where GP (µ(·), C(·, ·) denotes the law of a Gaussian process which is such that E[m(t)] = µ(t) and

Cov(m(t),m(t′)) = C(t, t′), and where both the mean function µ(·) and the covariance kernel C(·, ·) are

assumed to be differentiable. We impose further that the policy maker’s prior is such that the function m(·)

is independent of the probability distribution PT of T . Such priors are discussed in detail in Williams and

Rasmussen (2006).

Posterior expectation of the average response function m Recall that we assume the availability

of a random sample Yi, Ti, i = 1, . . . , n, satisfying equation (6). What is the posterior expectation m̂(t) of

m(t) given such data? Denote Y = (Y1, . . . , Yn) and T = (T1, . . . , Tn), and let

µi = E[m(Ti)|T ] = µ(Ti),

Ci,j = Cov(m(Ti),m(Tj)|T ) = C(Ti, Tj), and

Ci(t) = Cov(m(t),m(Ti)|T ) = C(t, Ti). (8)
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Let furthermore µ, C(t), and C denote the vectors and matrix collecting these terms for i, j = 1, . . . , n.

Since our setting implies joint normality of Y and m(t) conditional on T , the posterior expectation of m(t)

takes the form of a posterior best linear predictor:

m̂(t) = E[m(t)|Y ,T ] = E[m(t)|T ] + Cov(m(t),Y |T ) ·Var(Y |T )−1 · (Y − E[Y |T ])

= µ(t) +C(t) ·
[
C + σ2I

]−1 · (Y − µ). (9)

Posterior expectation of social welfare u and its derivative u′ What ultimately matters from the

policy maker’s perspective is not the response function m(·) itself, but how expected social welfare û(t)

depends on her policy choice t. Recall from equation (4) that u(t) = λ
∫ t

0
m(x)dx − t ·m(t). The function

u(·) is thus a linear transformation of m(·). This implies that it has a Gaussian process prior distribution,

like m(·) itself, where

ν(t) = E[u(t)] = λ

∫ t

0

µ(x)dx− t · µ(t), and (10)

D(t, t′) = Cov(u(t),m(t′))) = λ ·
∫ t

0

C(x, t′)dx− t · C(t, t′). (11)

The posterior expectation of u(t) then equals

û(t) = E[u(t)|Y ,T ] = E[u(t)|T ] + Cov(u(t),Y |T ) ·Var(Y |T )−1 · (Y − E[Y |T ])

= ν(t) +D(t) ·
[
C + σ2I

]−1 · (Y − µ). (12)

It is in this formula that the pieces of our optimal policy setup and of the Gaussian process prior setup start

to come together.

The optimal policy choice given the data We assume that the policy maker aims to maximize ex-

pected social welfare.5 The optimal t, maximizing posterior expected social welfare given the experimental

observations Y ,T , satisfies

t̂∗ = t̂∗(Y ,T ) ∈ argmax
t

û(t). (13)

The first order condition for this optimization problem is given by

∂
∂t û(t̂∗) = E[u′(t̂∗)|Y ,T ] = ν′(t̂∗) +B(t̂∗) ·

[
C + σ2I

]−1 · (Y − µ) = 0. (14)

where

B(t, t′) = Cov
(

∂
∂tu(t),m(t′)

)
= ∂

∂tD(t, t′) = (λ− 1) · C(t, t′)− t · ∂
∂tC(t, t′). (15)

5Note that the maximizer of expected welfare, chosen by a Bayesian decision maker, is in general different from the expectation
of the maximizer of welfare.
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Numerically, the maximizer of û might be found using a grid search algorithm or the Newton-Raphson

algorithm. Explicit expressions for D(·, ·) and B(·, ·), for a specific choice of C(·, ·), are derived in Appendix

C.

The posterior variance of m, u and u′ In order to choose the optimal policy t̂∗ we only need to know

the posterior expectation û(t) of u(t). In order to perform Bayesian inference, however, we might also be

interested in the posterior variance of m, u and u′. Given joint normality of Y and m(t) given T , the posterior

variance of m(t) is given by the difference between the prior variance of m(t), and the prior variance of the

estimator m̂(t),

Var(m(t)|Y ,T ) = Var(m(t)|T )−Var(m̂(t)|T ). (16)

Similarly, Var(u(t)|Y ,T ) = Var(u(t)|T ) − Var(û(t)|T ) and Var(u′(t)|Y ,T ) = Var(u′(t)|T ) − Var(û′(t)|T ).

The prior variance of m(t) is given by Var(m(t)) = C(t, t) by assumption, while

Var(u(t)|T ) = λ2 ·
∫ t

0

∫ t

0

C(x, x′)dx′dx− 2λt ·
∫ t

0

C(x, t)dx+ t2 · C(t, t),

Var(u′(t)|T ) = (λ− 1)2 · C(t, t)− 2(λ− 1) · ∂
∂t′C(t, t′)|t′=t + t2 · ∂2

∂t′∂t · C(t, t′)|t′=t. (17)

The prior variances of the estimators (posterior expectations) equal

Var(m̂(t)|T ) = C(t) ·
[
C + σ2I

]−1 · C(t)′,

Var(û(t)|T ) = D(t) ·
[
C + σ2I

]−1 ·D(t)′, and

Var(û′(t)|T ) = B(t) ·
[
C + σ2I

]−1 ·B(t)′. (18)

Choice of covariance kernel To fully specify the prior for m(·), we need to describe its prior moments,

that is the mean function µ(·) and the covariance kernel C(·, ·). Following common practice in the machine

learning literature (cf. Williams and Rasmussen, 2006) we take µ = 0 and consider covariance kernels of the

form

C(t1, t2) = v0 + v1 · t1t2 + exp
(
−|t1 − t2|2/(2l)

)
. (19)

The first two terms correspond to the covariance kernel of a linear trend β0 + β1t where β0 and β1 are

uncorrelated and have variance v0 and v1. If v0 and v1 are chosen to be large, this prior (i) allows for

arbitrary functional forms of the relationship between t and Y , (ii) is relatively uninformative about the

intercept and slope of the relationship between t and Y , while (iii) providing shrinkage towards smooth

functions.

Covariates and conditional independence Thus far we have assumed that Ti varies randomly (inde-

pendently of εi) in our data. In practice, we can often more plausibly justify conditional independence given

additional observed covariates Wi. If independence holds only conditionally, i.e., Ti ⊥ εi|Wi, we can consider

a Gaussian process prior for k(t, w) = E[Y |T = t,W = t]. Such a conditional approach is also warranted in
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experimental settings, such as the one considered in section 4, when we wish to adjust for random imbalances

of covariates. The details of the conditional approach are spelled out in Section 5 below.

4 Application - The RAND health insurance experiment

We now turn to our empirical application, using the data of the RAND health insurance experiment to

estimate the behavioral response function m(·) as well as the social welfare function u(·), which in turn is

used to determine the optimal coinsurance rate t̂∗.

Background and data The following discussion is based on the review of the RAND experiment provided

by Aron-Dine et al. (2013). The RAND experiment, which took place between 1974 and 1981, provided health

insurance to more than 5,800 individuals from about 2,000 households in six different locations across the

United States. Families participating in the experiment were assigned to plans with one of six coinsurance

rates. Four of the six plans simply set different overall coinsurance rates of 95, 50, 25, or 0 percent (free

care). The other two plans were somewhat more complicated, with higher coinsurance rates for dental and

outpatient mental health services, or for outpatient services in general. For the sake of simplicity of our

discussion, data from the last two plans are neglected; the analysis focuses on the first four plans. The

probability of assignment to each of these was .32 for the free care plan, .11 for the 25% coinsurance plan,

.07 for the 50% coinsurance plan, and .19 for the 95% coinsurance plan.

Families were additionally randomly assigned, within each of the six plans, to different out-of-pocket

maximums, referred to as the “Maximum Dollar Expenditure.” The possible Maximum Dollar Expenditure

limits were 5, 10, or 15 percent of family income, up to a maximum of $750 or $1,000 (roughly $3,000 or

$4,000 in 2011 dollars). We pool data across Maximum Dollar Expenditure amounts, and only consider the

effect of coinsurance rates on expenditures.

Replication of results from Aron-Dine et al. (2013) As a first step, we replicate some of the results

of Aron-Dine et al. (2013). We estimate predicted expenditures, using specifications corresponding to those

used by Aron-Dine et al. (2013) for rows 2 and 3 in each of the panels of their Table 3. The chosen regression

specification controls for month× site fixed effects and year fixed effects; this is necessary, since treatment was

only conditionally random. The chosen specification additionally corrects for under-reporting of spending,

by proportionally scaling up spending for outpatient services based on estimated rates of under-reporting.

As discussed in Aron-Dine et al. (2013), this adjustment has only a minor impact on results. Our Table 1

reports predicted values for the share of families with any spending and for the average amount of spending

within each of the treatment categories. Column 3 and 4 of this table control additionally for a rich set

of predetermined covariates to correct for imbalance in the assignment. This correction again has only a

minor effect. As can be seen from this table, spending is essentially unaffected by the coinsurance rate in

the range from 95% coinsurance to 25% coinsurance. Only when approaching the free-care treatment does

there appear to be an effect of the coinsurance rate on spending.
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Figure 1: Health expenditures m, social welfare u and its derivative, and credible sets for u′. Estimates
based on the RAND health insurance experiment data.
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Table 1: Predicted average expenditures for different coinsurance rates

(1) (2) (3) (4)
Share with Spending Share with Spending

any in $ any in $
Free Care (t = 1) 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)
25% Coinsurance (t = .75) 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)
50% Coinsurance (t = .5) 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)
95% Coinsurance (t = .05) 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)
N 14777 14777 14777 14777

Notes: This table shows OLS estimates of average health care expenditures for the different treatment arms.
Columns (1) and (2) control for month × site fixed effects and year fixed effects, columns (3) and (4) control
additionally for a large set of further pre-determined covariates. All regressions are pooled across Maximum
Dollar Expenditure values.

Estimation of m(·) We next apply the method proposed in Section 3 to these data. Consider first

estimation of m, the response function which gives expected spending as a function of the subsidy rate t.

The subsidy rate t equals 1 minus the coinsurance rate. We use a Gaussian process prior with squared

exponential covariance kernel plus an “uninformative” (dispersed) linear component.6 We use the same

controls as in column 4 of table 1, so that our estimate m̂ is effectively a smooth interpolation of the

estimates in this column. The first panel of Figure 1 shows our estimate m̂, as well as the estimated slope

of m, m̂′. As to be expected based on the predicted values of table 1, m̂ is flat over most of it’s support and

curves upward toward the right, as t approaches 1, corresponding to the free care plan.

Estimation of u(·) and of t∗ We next calculate the posterior expected social welfare û, as in equation (12),

and its derivative û′. We assume that the preference for redistribution to the sick is given by λ = 1.5. This

is a key parameter reflecting a normative choice by the policy maker; alternative values for λ are considered

below. The specific parameter is chosen for illustration only, and our findings should be interpreted in this

light. The second panel of Figure 1 plots our estimate û of social welfare, and its derivative û′. The optimal

policy choice t̂∗ solves the first order condition û′(t̂∗) = 0. We find an optimal policy choice of t̂∗ = 0.82,

corresponding to a coinsurance rate of 18%. As the objective function is fairly flat around this point, the

free care plan performs almost as well in terms of expected social welfare.

6Specifically, we use the type of prior discussed in Section 5 below, with covariance kernel Ck of the form

1
σ2C

k((t1, w1), (t2, w2)) = v0 + v1 · t1t2 + exp
(
− 1

2

(
‖t1 − t2‖2 + ‖w1 − w2‖2

))
, (20)

where we choose v0 = 100 and v1 = 50. ‖t1− t2‖ is the absolute difference in coinsurance, and ‖w1−w2‖ is the Euclidean norm
of the difference in covariates. Covariates are scaled such that (i) year fixed effects and month × location fixed effects have a
distance of 2 when they are unequal, and (ii) all other covariates have a distance of .2 when they are one standard deviation

apart. For the distribution of covariates PW we consider an “uninformative” Dirichlet prior with α = 0, which implies that P̂W
is equal to the empirical distribution of W .
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Credible sets The last panel in Figure 1 plots a point-wise 95% credible set for u′(t) for each t, centered at

û′(t) and with length equal to 1.96 times the posterior standard deviation of u′(t). A frequentist confidence

band, not shown here, looks almost identical. The intersection of this credible band with the horizontal axis

yields a corresponding credible set for the optimal policy choice, which in this case ranges from a subsidy

rate t of 68% to a subsidy rate of 100%, that is free care.

Comparison to the conventional “sufficient statistic” approach We next compare our results to

those obtained using the conventional approach in public finance. As emphasized by Chetty (2009), the first

order conditions for optimal policy models in a wide variety of settings only involve some key behavioral

elasticities at the optimal policy. The corresponding empirical estimates of optimal policy are based on

estimates of these behavioral elasticities, but usually estimated at some policy level other than the optimal

one. Under the assumptions of section 2, the marginal social return to an increase of t can be rewritten as

u′(t) = m(t) · [(λ− 1)− t ·m′(t)/m(t)] = m(t) ·
[
(λ− 1)− η · t

1− t

]
, (21)

where η is the elasticity of health-care expenditures m with respect to copay 1− t, η := − ∂m(t)
∂(1−t) ·

1−t
m(t) . Note

that η is a function of t unless m is log-linear. Solving the first order condition u′(t∗) = 0 yields

t∗ =
1

1 + η/(λ− 1)
. (22)

The “sufficient statistic” approach then substitutes an estimate η̂ of η into equation (22). In order to estimate

η, one could fit a linear regression of log(Y ) on log(1 − t) as well as the appropriate controls, and take the

negative of the coefficient on log(1− t) as the estimate of η. This turns out not to be feasible in the present

context, however, given that t = 1 for an important part of the experimental sample so that log(1− t) is not

well defined. For these observations, the log-linear specification clearly makes no sense.

Various estimates for η based on the RAND experiment have been proposed in the literature, as discussed

by Aron-Dine et al. (2013). The most famous estimate, constructed by the RAND investigators themselves,

is given by η̂ = 0.2. This estimate was constructed in a fairly complicated manner, based on so-called

“arc-elasticities” for pairwise comparisons and averaging across these comparisons. Plugging this estimate

into the sufficient-statistic formula yields t̃∗ = 1/1.4 ≈ 0.7, that is a suggested copay of approximately 30%.

This is 12 percentage points higher than the optimal copay of 18% obtained using our method. Table 4 of

Aron-Dine et al. (2013) presents various alternative estimates η̂, based on the more standard definition of an

elasticity underlying our derivation of the sufficient statistic formula. Their estimates, omitting the free-care

plan from calculations, are slightly larger than 0.5. Plugging this into the formula for t̃∗ yields t̃∗ ≈ 1/2 = .5

– that is a suggested copay of approximately 50%. This is 32 percentage points or almost 180 percent higher

than the optimal copay of 18% obtained using our method.
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Figure 2: The optimal policy t∗ as a function of λ
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Notes: This graph plots the optimal policy t∗ as a function of distributive preference λ, estimated using
our proposed method, using the sufficient statistic approach with the Aron-Dine et al. (2013) estimate of
η̂ = 0.5, and using the RAND investigators’ estimate of η̂ = 0.2.

Where do these differences come from? Note that we have (i) assumed the same model and the same

social welfare function, (ii) have imposed the same value of λ = 1.5, and (iii) used the same data to estimate

the behavioral relationship m. The difference stems from the way m, and thus u, are estimated. First, our

method did not impose the log-linear functional form implicit in the constant-elasticity specification. In fact,

η seems to vary significantly across t. Second, we estimate m in levels rather than in logs. This gives a

larger weight to infrequent but high occurrences of large expenditures Y . Estimation in levels is appropriate

according to the decision-theoretic setup. Third, we estimate m in a Bayesian way. This imposes some

“shrinkage.” Note, however, that we have used a prior which is relatively uninformative about the level and

slope of m.

Varying λ The estimates of the optimal coinsurance rate discussed thus far are based on the normative

choice of λ = 1.5. To explore the difference between our method and the sufficient statistic approach more

systematically, Figure 2 plots the optimal policy t∗ as a function of λ, estimated in three different ways;

using our approach, using the sufficient statistic approach with the Aron-Dine et al. (2013) estimate of

η̂ = 0.5, and using the RAND investigators’ estimate of η̂ = 0.2. A higher value of λ (a higher preference

for redistribution to the sick) implies a higher t∗, and so does a lower estimated elasticity η̂. Our approach

consistently yields a higher t∗ than the sufficient statistic approach, showing that our basic comparison is

not specific to the value λ = 1.5.

Our method yields t∗ > 0 even when λ = 1 because expenditures are estimated to be decreasing in t for

small values of t, so that an additional US$ for the insured costs the insurance less than one US$. Note that

values of λ < 1 would correspond to a preference for redistribution from the sick to the healthy.
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5 Extensions

This section discusses several extensions of the setting introduced in Sections 2 and 3. First, we consider

data where conditioning on covariates Wi is necessary for Ti to be independent of εi. We derive formulas for

posterior expected social welfare for this case. Next, we briefly discuss non-normal outcomes Y . Then we

consider optimal experimental design when the goal is to maximize social welfare, and assess the social value

of adding experimental observations. Finally, we consider an alternative class of policy problems, where the

goal is to maximize the average of some observable outcome net of the cost of inputs. The solution to this

problem takes a form similar to the one we derived for the problem of optimal insurance, with different

covariance functions D(t) and B(t).

Conditional independence We now discuss the generalization of the setting of Section 3 to the case

where random assignment of Ti holds conditional on a vector of observable covariates Wi. Assume that we

observe i.i.d. draws of (Yi, Ti,Wi), that (as before) Yi = g(Ti, εi), and that εi is independent of Ti given Wi.

Define k(t, w) = E[g(t, εi)|Wi = w], assume

Yi|Ti = t,Wi = w ∼ N(k(t, w), σ2), (23)

and let

m(t) = E[g(t, εi)] =

∫
k(t, w)dPW (w). (24)

Consider a prior for k(·, ·) of the form k(·, ·) ∼ GP (µk(·), Ck(·, ·)), where now the mean function µk(·) is a

function of (t, w), and similarly for the covariance kernel Ck(·, ·). Consider furthermore a prior for PW of the

form PW ∼ DP (α, P 0
W ), where DP (α, P 0

W ) is the law of a Dirichlet process such that E[PW (·)] = P 0
W (·), and

α is the “precision” of the prior. An introduction to Dirichlet priors can be found in Ghosh and Ramamoorthi

(2003). Assume finally that the prior is such that k(·, ·) and PW are independent.

Under these assumptions, the posterior expectation of m(t) is equal to m̂(t) =
∫
k̂(t, w)dP̂W (w), where

k̂ and P̂W are the corresponding posterior expectations. The posterior expectation of k(t, w) is given by

k̂(t, w) = µk(t, w) + Ck(t, w) ·
[
Ck + σ2I

]−1
· (Y − µk), where

µk
i = E[k(Ti)|T ,W ] = µk(Ti,Wi),

Ck
i,j = Cov(k(Ti,Wi), k(Tj ,Wj)|T ,W ) = C((Ti,Wi), (Tj ,Wj)), and

Ck
i (t, w) = Cov(k(t, w), k(Ti,Wi)|T ,W ) = Ck((t, w), (Ti,Wi)). (25)

The posterior expectation of dPW (w) is equal to

dP̂W (w) =
α

α+ n
dP 0

W +
n

α+ n
dPn

W , (26)
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where Pn
W is the empirical distribution of Wi in the sample. Combining these results, we get

m̂(t) =µ̂(t) + Ĉ(t) ·
[
Ck + σ2I

]−1
· (Y − µk), where

µ̂(t) :=
α

α+ n

∫
µk(t, w)dP 0

W (w) +
1

α+ n

∑
i

µk(t,Wi), and

Ĉ(t) :=
α

α+ n

∫
Ck(t, w)dP 0

W (w) +
1

α+ n

∑
i

Ck(t,Wi). (27)

Similarly, for social welfare we get

û(t) =ν̂(t) + D̂(t) ·
[
Ck + σ2I

]−1
· (Y − µk), where

ν̂(t) :=λ

∫ t

0

µ̂(x)dx− t · µ̂(t), and

D̂(t) :=λ ·
∫ t

0

Ĉ(s, t′)ds− t · Ĉ(t, t′). (28)

Non-normal residuals So far, it was assumed that the outcomes Yi are conditionally normally distributed.

This seems a reasonable approximation in the context of our application. When outcomes are not normally

distributed, there are various possible ways to generalize our setting, including the following two.

First, one could specify an appropriate alternative model for the outcome Yi given Ti and Wi. Williams

and Rasmussen (2006) discusses this in detail for the the case of binary outcomes, for instance. This

approach has the advantage that it remains fully in the Bayesian paradigm, with its desirable decision

theoretic properties. It has the disadvantage that the mapping from data to estimates becomes nonlinear

and less transparent. In this case computation of m̂ and û generally requires numerical simulation.

Alternatively, one could use the exact same estimators for m(·), u(·), and u′(·) which we have been using,

but re-interpret them as posterior best linear predictors rather than posterior expectations. This has the

advantage of maintaining the transparent and simple mapping from data to estimates. This is also in line

with common empirical practice. Most non-parametric regression estimators are linear in the outcomes Y ,

and ordinary least squares regressions are commonly fit in settings with non-normal outcomes. This approach

has the disadvantage that it lacks the decision theoretic justifications of the fully Bayesian approach.

Optimal experimental design and optimal sample size The decision problem considered thus far

was to pick a policy t maximizing expected social welfare û given experimental data Y ,T . We can now

take a step back and ask how to optimally design such experiments in order to maximize ex-ante expected

welfare. And, taking one more step back, we can ask what the optimal sample size is, or equivalently, how

to gauge the social value of an additional experimental observation.

An experimental design is a vector of policy levels T = (T1, . . . , Tn), assigned to a random sample of

units i = 1, . . . , n. The optimal design maximizes ex-ante expected welfare. Ex ante welfare, as a function of
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T , is defined assuming that the policy t is chosen as t̂∗ = t∗(Y ,T ) once the experiment is completed. Define

υ̂(T ) := E[max
t
û(t)|T ] = E[û(t̂∗)|T ]

= E[max
t
ν(t) +D(t) ·

[
C + σ2I

]−1 · (Y − µ)|T ], (29)

where Y |T ∼ N
(
µ,C + σ2I

)
. The optimal experimental design T ∗ satisfies T ∗ ∈ argmax T υ̂(T ). The

dependence of υ̂(T ) on T is implicit, through the dependence of D, C, and the distribution of Y on

the design points Ti. υ̂(T ) can be evaluated using simulation, and solutions to the maximization problem

can be found numerically. Analytic characterizations are available in an older version of this manuscript

[REFERENCE OMITTED FOR BLIND REVIEW].

Consider now the value of adding observations to our sample, and the value of the whole experiment.

Both are characterized by the following value function for experiments of size n, assuming that both the

experimental design T and the policy t are chosen optimally,

υ̂(n) := max
T

υ̂(T ) = max
T

E[max
t
û(t)|T ] = E[û(t̂∗)|T = T ∗]. (30)

The value of adding an observation to the sample is given by υ̂(n + 1) − υ̂(n). The value of the whole

experiment is given by υ̂(n) − υ̂(0), where υ̂(0) = maxtE[u(t)] is the prior expected maximum of u. The

optimal sample size satisfies n∗ = argmax n (υ̂(n)−
∑n

i=1 c(i)) . Here c(i) is the cost of an additional unit of

observation at sample size i.

Production objective So far we have considered optimal policy problems of a form common in public

finance, where social welfare reflects a trade-off between public revenues and the welfare (utility) of transfer

recipients or tax payers. Welfare is estimated indirectly in these settings, since utility is not observable.

Another important class of policy problems is based on objectives defined in terms observable outcomes.

Such problems can be described in the language of production functions. As an example, consider an

educational setting, where i indexes schools, and Yi measures long-run student outcomes of interest (or

proxies for these long-run outcomes such as test scores). The vector T ∈ Rdt is equal to the level of

educational inputs such as teachers per student (class size), teacher salaries (affecting self-selection into

teaching), school facilities, extra tutoring, length of the school year, etc.

Average student outcomes in school i are determined by the “educational production function” Yi =

g(Ti, εi) where εi denotes unobserved inputs such as students’ family backgrounds. The policy maker’s

objective is to maximize average (expected) outcomes E[Yi] across schools, net of the cost of inputs. The

unit-price of input j is given by pj . The policy maker’s willingness to pay for a unit-increase in Y is given

by λ. This yields the objective function u(t) = λ ·m(t)− p · t, where we define m(t) = E[g(t, εi)], as before.

Given the assumptions of Section 3 (experimental assignment of Ti, normal residuals, Gaussian process
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prior for m(·)), the posterior mean for u is given by

û(t) = ν(t) +D(t) ·
[
C + σ2I

]−1 · (Y − µ), where now

ν(t) = λ · µ(t)− p · t and

D(t, t′) = λ ·C(t, t′). (31)

and the optimal policy satisfies the first order condition û′(t̂∗) = ν′(t̂∗) +B(t̂∗) ·
[
C + σ2I

]−1 · (Y −µ) = 0,

as before, where now B(t, t′) = λ · ∂
∂tC(t, t′).

Examples of experimental evidence on the role of educational inputs can be found in Fryer (2014), Angrist

and Lavy (1999), Krueger (1999), and Rivkin et al. (2005). Further examples for such choice-of-inputs

problems can be found in the experimental development economics literature; cf. the survey in Banerjee and

Duflo (2009). The profit maximization problem of the firm, as treated in standard microeconomic theory

(cf. Mas-Colell et al., 1995, chapter 5), can be described in these terms as well.

6 Conclusion

This paper combines insights from the theory of optimal taxation and insurance with insights from machine

learning and nonparametric Bayesian decision theory. This paper proposes a framework based on a standard

social welfare function, (quasi-)experimental policy variation, and Gaussian process priors, which leads to

tractable, explicit expressions characterizing the optimal policy choice. Applying the proposed method to

data from the RAND health insurance experiment we find values for the optimal policy choice that are

substantially different from those obtained using the standard “sufficient statistic” approach.

This paper points toward a large area of potential applications for machine learning methods in informing

policy. Most commonly, machine learning methods are devised to solve problems of prediction. Relative

to pure prediction problems, two additional conceptual layers enter the problem of optimal policy choice.

First, we need some form of exogenous variation to arrive at causal estimates, so that we can interpret

predictions as counterfactual average outcomes. Second, we need some basis for normative evaluations of

these counterfactual outcomes. One possible normative basis is the class of social welfare functions which

are considered in this paper.
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Appendix

This appendix provides additional background and technical details to supplement our main discussion.

A The envelope theorem

A key step in the derivation of the social welfare function in equation (4) is the assumption that individuals’

behavioral responses do not affect private welfare. This assumption is justified by the envelope theorem.

There are many versions of this theorem, this section reviews a basic version. For further discussion see

Mas-Colell et al. (1995), Milgrom and Segal (2002), and Chetty (2009).

Let t be a (policy) parameter, for instance the share of health care expenditures covered by insurance,

and let x be a vector of individual choices, such as the choice of when to visit a doctor or hospital, etc.

Suppose an individual maximizes υ(x, t) subject to x ∈ X , given t. The set X captures all constraints

faced by the individual. Let x(t) be the individual’s choice given t, where we assume that she maximizes her

utility, x(t) ∈ argmax x∈X υ(x, t). The individual’s welfare (maximum utility) is given by

V (t) = υ(x(t), t) = sup
x∈X

υ(x, t). (32)

Let x∗ = x(t) for some fixed t, and define

Ṽ (s) = V (s)− υ(x∗, s) = υ(x(s), s)− υ(x(t), s)

= sup
x∈X

υ(x, s)− υ(x∗, s). (33)

This definition immediately implies Ṽ (s) ≥ 0 for all s and Ṽ (t) = 0. If Ṽ is differentiable at t, it follows

that Ṽ ′(t) = 0, so that

V ′(t) =
∂

∂s
υ(x∗, s)|s=t, (34)

where x∗ does not depend on s on the right hand side. Behavioral changes are thus irrelevant for the welfare

impact of a marginal policy change. General conditions to guarantee differentiability of V are difficult to

obtain; sufficient conditions are discussed in Milgrom and Segal (2002). Note, however, that differentiability

of x and in particular continuity of the feasible set X are not required.

In the context of our health insurance application, the choice vector x might include behavioral margins

such as labor supply, preventative health behavior, whether to visit a doctor, which doctor to visit, etc.

For a given choice vector x, the coinsurance rate t then determines how much money the individual has

available for consumption other than health care. An individual’s utility υi depends on all her choices and

her consumption. The envelope theorem tells us that the effect of a policy change on utility υi is the same

as the effect of the hypothetical increase in her consumption that would result holding her current choices

fixed. This effect can be calculated mechanically, multiplying current health care expenditures by the change

in t.
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B General policy problem

Sections 2 and 5 discussed two common classes of policy problems in economics. These are special cases of

a more general class of policy problems, where we can write the social welfare function in the form

u = Lm+ u0, (35)

for a known function u0 on T ⊂ Rdt and a linear operator L mapping the set of continuously differentiable

functions m defined on T into itself. The linear operator might be defined using operations such as integra-

tion, multiplication by known functions, etc. Maintaining the same assumptions as before on experimental

data and the policy maker’s prior, in particular m ∼ GP (µ(.), C(., .)), where µ and C are defined on T

again, and assuming the necessary continuity and differentiability conditions, we get posterior expectations

of the form

m̂(t) = µ(t) +C(t)·
[
C + σ2I

]−1 · (Y − µ)

û(t) = ν(t) +D(t)·
[
C + σ2I

]−1 · (Y − µ)

û′(t) = ν′(t) +B(t)·
[
C + σ2I

]−1 · (Y − µ) (36)

where

ν(t) = (Lµ)(t) + u0(t),

D(t, t′) = Cov(u(t),m(t′)) = LxC(x, t′),

B(t, t′) = Cov

(
∂

∂t
u(t),m(t′)

)
=

∂

∂t
D(t, t′) =

∂

∂t
LxC(x, t′). (37)

In these equations we write LxC(x, t′) to emphasize that this expression applies the linear operator L to

C(x, t′) as a function of x for fixed t′.

With this more general formulation, we see immediately how our baseline application extends to more

general policy problems. This includes in particular the case where t is a multidimensional vector, including

for instance tax rates for several tax brackets, or features such as maximum deductibles in insurance plans.

This also includes the case where λ is allowed to vary with t, so that u(t) =
∫ t

0
λ(x)m(x)dx− t ·m(t).

C Explicit covariance kernels

Consider the optimal insurance problem of Section 2, where u(t) = λ
∫ t

0
m(x)dx− t ·m(t), and a covariance

kernel for the prior on m(·) of the form

C(t1, t2) = v0 + v1 · t1t2 + 1
ϕ(0) · ϕ

(
t1 − t2
l

)
, (38)
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where ϕ is the standard normal pdf and l is a parameter determining the length scale of the kernel. Denote

the standard normal cdf by Φ. We neglect covariates here for clarity of exposition; otherwise this is the

covariance kernel used in our application.

For this setting, we can provide explicit expressions for the covariance functions D and B,

D(t, x) = λ ·
∫ t

0

C(x′, x)dx′ − t · C(t, x)

= (λ− 1)v0t+ (λ/2− 1)v1xt
2

+
1

ϕ(0)
·
[
λl ·

(
Φ

(
t− x
l

)
− Φ

(
−x
l

))
− t · ϕ

(
t− x
l

)]
, and (39)

B(t, x) = (λ− 1) · C(t, x)− t · ∂
∂tC(t, x)

= (λ− 1)v0 + (λ− 2)v1tx+
1

ϕ(0)
·
[
(λ− 1) · ϕ

(
t− x
l

)
− t

l
· ϕ′

(
t− x
l

)]
= (λ− 1)v0 + (λ− 2)v1tx+

ϕ
(
t−x
l

)
ϕ(0)

·
[
(λ− 1) +

t · (t− x)

l2

]
. (40)

We finally get

Var(u′(t)) = Var((λ− 1) ·m(t)− t ·m′(t)) =

= (λ− 1)2 · C(t, t)− 2(λ− 1) · t · ∂
∂t′C(t, t′)|t′=t + t2 · ∂2

∂t′∂t
C(t, t′)|t′=t

= (λ− 1)2v0 + (λ− 2)2t2v1 + (λ− 1)2 +
t2

l2
. (41)

The latter expression is useful for the construction of credible sets; cf. Section 3.

D Equivalent kernel

By symmetry and unimodality of the posterior under our assumptions, the posterior expectation m̂(t) =

E[Y |T = t] can be written as a maximum a posteriori, that is, as the solution to the penalized regression

m̂ = argmin
l(.)

[
1

σ2
·
∑
i

(Yi − l(Ti))2 + ‖l − µ‖2C

]
, (42)

where ‖m−µ‖2C is a penalty term. The norm ‖m‖2C is the reproducing kernel Hilbert space norm correspond-

ing to the covariance kernel C. It is defined as the norm corresponding to an inner product on the space of

all linear combinations of functions of the form C(t, .) and their limits, where 〈C(t1, .), C(t2, .)〉 = C(t1, t2),

cf. Wahba (1990) and van der Vaart and van Zanten (2008). By equation (9), the posterior expectation can

also be written in the form m̂(t) = w0(t)+ 1
n

∑
i w(t, Ti) ·Yi for some weight function w. The weight function

w(., Ti) thus corresponds to the estimate of m̂ we would obtain if we had Yi = n and Yj = 0 for j 6= i, and
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if we replace µ by 0. Representation (42) then implies

w(., Ti) = argmin
l(.)

∑
j 6=i

l(Ti)
2 + (n− l(Ti))2 + σ2 · ‖l‖2C


= argmin

l(.)

[
1

2

∫
l(t)2dFn(t) +

σ2

2n
· ‖l‖2C − l(Ti)

]
, (43)

where Fn is the empirical distribution function of T . If we replace the empirical distribution Fn by the

population distribution F in this expression, we get an approximation of w by the solution to the minimization

problem

w(., t′) = argmin
l(.)

[
1

2

∫
l(t)2dF (t) +

σ2

2n
· ‖l‖2C − l(t′)

]
. (44)

The solution to this latter minimization problem is called the equivalent kernel (cf. Silverman, 1984; Sollich

and Williams, 2005; Williams and Rasmussen, 2006, chapter 7). The equivalent kernel does not depend on

the data, but it does depend on the sample size n which scales the penalty term ‖m‖2C . The validity of this

approximation hinges on the uniform closeness of
∫
m(t)2dFn(t) and

∫
m(t)2dF (t).

We can feed this equivalent kernel approximation into our policy problem, to get an approximation to

posterior expected social welfare in terms of a weighted average of outcomes with deterministic weights. For

the general policy problem of Appendix B, where u = Lm+ u0, this yields û(t) ≈ ũ0(t) + 1
n

∑
i v(t, Ti) · Yi,

where v(·, Ti) = Lw(., t′). This approximation points toward a derivation of the frequentist properties of û(·)

and of t̂∗. In particular, if m̂ is consistent at a fast enough rate and some conditions on the weight functions

hold, then the central limit theorem suggests û(t) ∼A N
(
u(t), 1

n Var(v(t, Ti) · Yi)
)
. A Taylor expansion

around the optimum suggests t̂∗ ∼A N
(
t∗, 1

n·u′′(t∗)2 Var(∂tv(t, Ti) · Yi)
)
.
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