
CHAPTER 1
Background

1.1 Positive-definite functions, covariances, and reproducing kernels.

We begin with a general index set T. Examples of T that are of interest follow:

T	 =	 (1,2,...,N)

T	 =	 (... , —1, 0,1, ...)

T	 =	 [0,1]

T = Ed (Euclidean d-space)

T = S (the unit sphere)

T = the atmosphere (the volume between two concentric spheres),

etc. The text below is generally written as though the index set were continuous,
but the discrete examples are usually special cases. A symmetric, real-valued
function R(s, t) of two variables s, t E T is said to be positive definite if, for any
real a 1 ,...,an , and t,... ,t, E T

n

aaj R(ti,tj) > 0,
i,j=1

and strictly positive definite if ">" holds. If R(.,•) is positive definite, then we
can always define a family X(t), t E T of zero-mean Gaussian random variables
with covariance function R, that is,

E X(s)X(t) = R(s,t),	 s,t E T.	 (1.1.1)

All functions and random variables in this book will be real valued unless
specifically noted otherwise.

The existence of such a well-defined family of random variables in the
continuous case is guaranteed by the Kolmogorov consistency theorem (see, e.g.,
Cramer and Leadbetter (1967, Chap. 3)). Given a positive-definite function
R(•, •) we are going to associate with it a reproducing kernel Hilbert space
(r.k.h.s.). A (real) r.k.h.s. is a Hilbert space of real-valued functions on T with
the property that, for each t E T, the evaluation functional L t , which associates
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f with f (t), Ltf —+ f (t), is a bounded linear functional. The boundedness means
that there exists an M = Mt such that

I Ltf I = If (t)I	 MII f II for all f in the r.k.h.s.,

where II • II is the norm in the Hilbert space. We remark that the familiar Hilbert
space £2 [0,1] of square integrable functions on [0, 1] does not have this property,
no such M exists, and, in fact, elements in £2[0,1] are not even defined pointwise.

If fl is an r.k.h.s., then for each t E T there exists, by the Riesz representation
theorem, an element R t in i[ with the property

Ltf =< Rt, f >= f (t),	 f E x.	 (1.1.2)

Rt is called the representer of evaluation at t. Here, and elsewhere, we will use
< •, • > for the inner product in a reproducing kernel space. This inner product
will, of course, depend on what space we are talking about. This leads us to the
following theorem.

THEOREM 1.1.1. To every r.k.h.s. there corresponds a unique positive-
definite function (called the reproducing kernel (r.k.)) and conversely, given a
positive-definite function R on T x T we can construct a unique r.k.h.s. of
real-valued functions on T with R as its r.k.

The proof is simple. If f is an r.k.h.s., then the r.k. is R(s, t) _
<R, Rt >, where for each s, t, R8 and Rt are the representers of evaluation at
s and t. R(.,.) is positive definite since, for any t 1 , .. . , tn E T, a1,. . .

> ataj R(t, t) _	 asai < Rt, , Rt; >

= IIEajRts 112 > 0.

Conversely, given R we construct f = lR as follows. For each fixed t E T,
denote by Rt the real-valued function with

Rt (•) = R(t, •).	 (1.1.3)

By this is meant: Rt is the function whose value at s is R(t, s). Then construct
a linear manifold by taking all finite linear combinations of the form

a=Rt;	(1.1.4)

for all choices of n, a 1 , ... , an , tl, ... , tn with the inner product

< Ea% Rt,, Ebj R81 >=	 < R, R8  >= Ea^biR(ts, s^)•
ii

This is a well-defined inner product, since R is positive definite, and it is easy to
check that for any f of the form (1.1.4) < Rt , f >= f (t). In this linear manifold,
norm convergence implies pointwise convergence, since

Ifn(t) — f(t)I =I <fn — f,Rt>I:Ilfn — fII IIRtII•
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Thus, to this linear manifold we can adjoin all limits of Cauchy sequences of 
functions in the linear manifold, which will be well defined as pointwise limits. 
The resulting Hilbert space is seen to be the r.k.h.s. HR with r.k. R. 

R is called the reproducing kernel, since 

<Rs,Rt >=< R(s, •), R(t, •) > = R(s, t). 

We will frequently denote by HR the r.k.h.s. with r.k. R, and its inner product 
by < •) • >R or just < •, • > if it is clear which inner product is meant. 
As a positive-definite function, under some general circumstances, R has an 
eigenvector-eigenvalue decomposition that generalizes the eigenvector-eigenvalue 
decomposition of a positive-definite matrix E, E = FDF' with T orthogonal 
and D diagonal. Below we will show why the squared norm | | / | |2 = | | / | |^ can 
be thought of as a generalization of the expression / ' E - 1 / with / a vector 
that appears in the multivariate normal density function with covariance E. In 
particular, suppose R(s, t) continuous and 

a R2(s,t)dsdt<oo. (1.1.5) 
T 

Then there exists an orthonormal sequence of continuous eigenfunctions, 
$1 , $2, ••• in C2IT] and eigenvalues \\ > X2 > • •. > 0, with 

f R(s,t)$„ {t)dt = \v$v(s), i/ = l , 2 , . . . , (1.1.6) 

0 0 

R{s,t) - Yl*»*A»)*At), (1.1-7) 
v=l 

I I R2(s,t)dsdt = '52 \2
V <oo . (1.1.8) 

J T JT „=1 

See the Mercer-Hilbert-Schmidt theorems of Riesz and Sz.-Nagy (1955, pp. 242-
246) for proofs of (1.1.6)-(1.1.8). Note that if we rewrite this result for the case 
T = (1 ,2 , . . . , AT), then (1.1.6)-(1.1.8) become 

R$u = A„$„, 
R = r\or', 

N 

trace R2 = ^ A2, 
I / = I 

where R is the N x N matrix with ijth entry R{i,j), $„ is the vector with j t h 
entry $v(j), D is the diagonal matrix with 1/1/th entry A„, and T is the orthogonal 
matrix with i/th column $„. 

We have the following lemma. 
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LEMMA 1.1.1. Suppose (1.1.5) holds. If we let

	f„ = fir f (t),D» (t) dt,	 (1.1.9)

then f E HR if and only if
2

	^ fv <00	 (1.1.10)
V_1 Av

and
O° 2

11f	 =	 ^^.	 (1.1.11)
ii=1

Proof. The collection of all functions f with E(f/))„) < oo is clearly a
Hilbert space with 11f 112 = E(ff/), )• We must show that R with

R(s,t) = E^,.^^(s)^^(t)

is its r.k. That is, we must show that R t E RR and

	< f, Rt >= f(t), f E fR ,	 t E T

for R(s) = R(t, s). Expanding f and R(t,.) in Fourier series with respect to
qD1, 4D2, ... , we have

f(.) - E f^^^(),
v

R(t,.) N{a„^„(t)}^„() .

Re E I{R since ^{,1„^„(t)} 2 /a„ _ E„ a„^^(t) = R(t,t) < oo and

< f, Rt >_< f, R(t,.) >_ E f„{J1„,„(t)}/a,,, 	 t E T
V

using the inner product induced by the norm in (1.1.11). But

	1: f, {\, ,,(t)}/\v =	 f,, ,(t) = f (t),
V	 v

and the result is proved.
We renark that if we begin with R satisfying (1.1.5) and construct the Hilbert

space of functions with E(f,,/a„) < oo, it is easy to show that the evaluation
functionals are bounded:

^f(t)^ _	
f-{ a.0.1(t)} <	 f^ E 

00

 a^^^(t)
^^	 V_i

	_ 	 11111	 R(t, t) = I1fII IIRt 11.
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We remind the reader of the Karhunen-Loeve expansion. Suppose R is a
covariance for which (1.1.5) holds, and let X(t), t E T be a family of zero-mean
Gaussian random variables with EX(s)X(t) = R(s, t) _ E0° 1 ^V ^V (s)(t).
Then X(t), t E T has a (quadratic mean) representation

X(t) ^	 X(t),

where	

V=1

where X1i X2,... are independent, Gaussian random variables with

EX,,=0, EXv=Av

and	 r
X„ = J X(s)41„(s) ds.	 (1.1.12)

T

The integral in (1.1.12) is well defined in quadratic mean (see Cramer and
Leadbetter (1967)). However, sample functions of X(t), t E T are not (with
probability 1) in R-RR, if R has more than a finite number of nonzero eigenvalues.
We do not prove this (see Hajek (1962a)), but merely consider the following
suggestion of this fact. Let

K

XK(t) =I X(t),	 t E T,
V=1

then for each fixed t, XK(t) tends to X(t) in quadratic mean, since

EIXK(t) - X(t)1 2 = EI E XV ,tV(t)I 2 = > A, (t) -> 0;
K+1	 K+1

however,
K 2

EIIXK(.)II 2 =E^ Xv =K--*oo asK—>oo.
V=1 A,,

This very important fact, namely, that the assumptions that f E flR and f a
sample function from a zero-mean Gaussian stochastic process are not the same,
will have important consequences later.

1.2 Reproducing kernel spaces on [0, 1] with norms involving
derivatives.

We remind the reader of Taylor's theorem with remainder: If f is a real- valued
function on [0, 1] with m - 1 continuous derivatives and f(m ) E £2[0,1], then we
may write

f (t) _	 vi f( )(o) + J 1 (^m u)1
)!

 1 f i^`l (u) du 	(1.2.1)
0
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where (x) + = x for x >_ 0 and (x)+ = 0 otherwise. Let '3m dente the class of
functions satisfying the boundary conditions f (") (0) = 0, v = 0,1.. . , m — 1. If
f E Bm then

.f (t) = J 1
 ( t

 u) 1) ^ 1 f (m) (u) du

= fo 1

Gm(t,u)f
(m) (u)du, say, (1.2.2)

where
Gm(t, u) = (t — u)+ - '/(m — 1)!.	 (1.2.3)

Gm is the Green's function for the problem Dm f = g, f E '3m , where D' denotes
the mth derivative. Equation (1.2.2) can be verified by interchanging the order
of integration in f(t) = fo dt1 -i fóm_ 1 dtm_ 2 ... fá' f (m) (u) du. Dente by
W°„ the collection of functions on [0, 1) with

{f:  f E 13m , f, f1,••  , f(m1)  absolutely continuous, f (m) E G2}.

It is not hard to show that W,on is a Hilbert space with square norm 11 f 11 2 =

fó (f (m ) (t))2 dt. We claim that Wm is an r.k.h.s. with r.k.

1R(s, t) = J G,..(t, u)Gm (s, u) du.	 (1.2.4)
0

To show that the evaluation functionals are bounded, note that for f E W O we
have

.f (s) = f 1 Gm (s, u)f (m) (u) du	 (1.2.5)
0

so that by the Cauchy-Schwarz inequality

f (s)l	 Gm (s, u) du Jj(.f (m) (u)) Z du

=	 R (s, s) 11fII•

To show that R(.,.) is the r.k. for W,,, we must show that Rt(•) = R(t, •) is in

W,on and that < Rt , f >= f (t), all f E W,. But

1

R(v) = 1 Gm (v, u)Gm (t, u) du
0

and hence Rt is in W,

(am

n. Rt) (v)=G.(t,v),
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as can be seen by letting f = R t in (1.2.5). Thus

< .f, Rt >_< Rt, f >= fo 1 Gm(t, ) )f 
(m)

(v) dv = .f (t)•

Now let c(t) = tv -1 /(v - 1)! for v = 1, 2, ... , m and denote the m-
dimensional space of polynomials of degree m - 1 or less spanned by 0 1 , ^,,,
as 11o. Note that Dm(ho) = 0. Since

(Dµ-1 0,.)( 0) = 1, it = v
= 0, µ54v, µ,v=1, ••,m,

f- endowed with the squared norm

m-1

IIlI2 = E [(Dv 0)(0)] 2 ,
V-0

is an m-dimensional Hilbert space with 0 1 i ... ,	 as an orthonormal basis, and
it is not hard to show that then the r.k. for fo is

m

V=1

To see this, let Rt (•) _	 `_ 1 	(t)(•); then

< Rt, 0. >_	 0„(t) < 0^, 0^ >=(t), a = 1, 2, ... , m.
v=1

We are now ready to construct the so-called Sobolev-Hilbert space Wm ;

W. : Wm [0, 1] _ { f : f, f', ... , f m- l absolutely continuous, f (m) E £2}.

There are a number of ways to construct a norm on Wm . The norm we give
here is given in Kimeldorf and Wahba (1971) and has associated with it an r.k.
that will be particularly useful for our purposes. Different (but topologically
equivalent) norms on this space will be introduced below and in Section 10.2.
"Sobolev space" is the general term given for a function space (not necessarily
a Hilbert space) whose norm involves derivatives. For more on Sobolev spaces,
see Adams (1975). Each element in Wm has a Taylor series expansion (1.2.1) to
order m and hence a unique decomposition

f=fo+f1

with fo E lo and fl E W7 , given by the first and second terms in brackets

in (1.2.1). Furthermore, f0 ((Dm fo)(u)) 2du = 0 and E; [(DL f1 )(0)] 2 = 0.
Thus, denoting W on by fl, we claim

m

Wm = f{0 ®R1,
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and, if we endow W,,, with the square norm

11f11 2 = 0 [(DMf)(o)1 2 + fo, (Dmf)2 (u) du

then 7{° and HI will be perpendicular. With this norm, it is not hard to show
that the r.k. for Wm is

R(s, t) _	 Oj"(s)OV(t) + f 1 Gm(s, u)Gm(t, u) du
v=1	 °

where G„z is given by (1.2.3). The reproducing kernel for the direct sum of
two perpendicular subspaces is the sum of the r.k.'s (see Aronszajn (1950)). An
important geometrical fact that we will use later is that the penalty functional

J„a (f)= f0(&) (U )) 2 du may be written

Jm(f) = II P1f lik
where P1 is the orthogonal projection of f onto H l in Wm .

We may replace Dom` in fo (Dm f ) 2 du by more general differential operators.
Let a l , a2 , ... , am be strictly positive functions with ai(0) = 1 and as many
derivatives as needed and let

L,m=DiD1 ...D 1 .
a 1 	a2	 am

Also let

M° =	 I (the identity)
M1

= 
D 1

am

M2 = D 1 D 1
a, _1	 am

Mm_1 = D1 D1 ...D 1

a2 a3	 am

and let w 1 , ... , Wm be defined by

wi(t) = am(t)

w2(t) = am(t) fo
t am_1(tm -1) dtm_i

fo
t

wm(t) = am(t)	 am- 1(tm-1)dtm

I
M -1	 t2

 

am-2(tm-2) dtm-2 "' fa a1(tl) dt1•
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Note that

	(Mµ lw)(0) = 1,	 µ = v

	

= 0,	 µ#v,	 µ,v=1,...,m.

The {w„ } are an "extended Tchebycheff system" and share the following property
with the polynomials 0 1 , ... , 0,,,. Let t 1 ,... , t,,, be distinct, with n >_ m; then
the n x in matrix T with i, vth entry w(t) is of rank m (see Karlin (1968)).

Now, let L3,,,, denote the class of functions satisfying the boundary conditions

(Mvf)(0)=0,	 v=0,1,...,m-1,

and let G„t be the Green's function for the problem L n f = g, f E ' m . We have
fE3m ^

f (t) _ am(t)J  am-1(tm-1) dtm-1

f t'n-i	 ti

J= 
J

am-2(tm-2) dtm-2 ... f (L.f)(u) du
0	 0

t(L,,,f)(u)du{a,,^(t) J t al(tl)dt1	 (1.2.6)
0	 u

t	 t

a2(t2)dt2 ...f	 am-1(tm-1)dtm_1}
t,

=
Jo

t Gm(t, u)(L.f)(u) du,

where G,a (t, nr) is equal to the expression in brackets in (1.2.6).
Let W° he the collection of functions on [0, 1] given by

{f:  f E Cim , Mof, M1 f, • • • , Mm-1f absolutely continuous, Lm f E G2}.

Then by the same arguments as before, W,on is an r.k.h.s. with the squared norm

11 f 11 2 = fo (Lm f) 2 (u) du, and reproducing kernel

i

R(s, t) = f
o
 G„L (s, u)Gm (t, u) du.

Letting Ho be span {w1,.. . , w.,,b } and R, be W°n , then letting 1 Vm be the Hilbert
space

Wm=rio®gil,

we have that Wm is an r.k.h.s. with

m-1	 1

11f11 2 = E [(MMf)(0)] 2 + f (Lmf) 2 du
V=0	 0
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and r.k.
m-1	 1

W,, ( 4 )w , (t) + f
o

O'(s, u)Gm(t, u) du.
L,=o 

Furthermore, we have the geometrical relation

f
1

(Lmf) 2 du = IIPifIIfV_I

where Pl is the orthogonal projection in W. onto fl1.
We have, for f E W„i , the generalized Taylor series expansion

tf(t) = E wv(t)(M-'-1f)( 0) + fo dm(t, u)(Lmf)(u) du.
v=1 

We remark that Wm and 'm are topologically equivalent; they have the same
Cauchy sequences. Another topologically equivalent norm involving boundary
rather than initial values will be introduced in Section 10.2.

1.3 The special and general spline smoothing problems.

The data model associated with the special spline smoothing problem is

	yi = f(t) +e,	 i = 1,2,.. . , n	 (1.3.1)

where t E T = [0,1], f E W,,,,, and E = (ei,... ,e)' — A(0, .2 J). An estimate of
f is obtained by finding f E W,n, to minimize

1 n	 /^ 1

n E(ys — f(tá))2 + A	 (f (m) (u)) 2 du.	 (1.3.2)
s=1

The data model associated with the general spline smoothing problem is

y4 = Lif + Ei, i_-1,2,...,n  (1.3.3)

where E is as before. Now T is arbitrary, f E 7(R, a given r.k.h.s. of functions
on T, and L 1 ,. . . , Ln are bounded linear functionals on HR. HR is supposed to
have a decomposition

HR =HO®x1

where dim fo = M < n. An estimate of f is obtained by finding f E HR to
minimize

1 n
	n E(yi - Lti.f )2 + )IIP1fIIR,	 (1.3.4)

i=1

where P1 is the orthogonal projection of f onto WI, in fR.
One of the useful properties of reproducing kernels is that from them one can

obtain the representer of any bounded linear functional. Let T; be the representer
for L=, that is,

< i7i, f >= Lif, f E HR.



BACKGROUND	 11

Then

rli(s) _< ij, Rs >= LgR9 = Li(.)R(s, •)	 (1.3.5)

where L i(.) means Li is applied to what follows as a function of (•). That is, one
can apply Li to R(s, t) considered as a function of t, to obtain ij(s). For example,
if L% f = f wi(u) f (u) du, then i^(s) = f wi(u)R(s, u) du, and if Li f = f'(ti), then
i1z(s) _ (8/au)R(s,u)I u=t ; . On the other hand LÉ is a bounded linear functional
on HR only if ij) obtained by th(s) = Li(.)R(s, •) is a well-defined element
of ?{R. To see the argument behind this note that if Li f = >e at f (tj) for any
finite sum, then its representer is ijt = EE aE Rt 1 , and any riz in HR will be a
limit of sums of this form and will be the representer of the limiting bounded
linear functional. As an example, L^ f = f'(ti) a bounded linear functional in
CHR = rk', = limh_.o(1/h)(Rt, +h - where the limit is in the norm topology,
which then entails that

a R(t, s)It=t ; = rlt(s) with 1j E HR.

f (k) (ti) can be shown to be a bounded linear functional in W„ L for k =
0,1, ... , m - 1. More details can be found in Aronszajn (1950).

We will now find an explicit formula for the minimizer of (1.3.4), which can
now be written

1 n
E(y:- < 77a, f >) 2 + A IIPif IIR.	 (1.3.6)

n É-1

THEOREM 1.3.1. Let q5 1 , ... , OM span the null space (Ito ) of Pl and let the
n x M matrix Tnx M defined by

TnxM = {LiPv}á 1 M 1

be of full column rank. Then ff, the minimizer of (1.3.6), is given by

M	 n

fA = E d„O„ + E c;^z	 (1.3.8)

v-1	 i=1

where

= P177^,
d = (d1, ... , dM)' _ (T'M-1T)-1T'M-1y,

c= (c1,...,cn)' = M -1 (I -T(T'M-1T)-1T'M-1)y, 	 (1.3.9)

M = E + nAI,

E = {<fa,i^ >}.

(Do not confuse the index M and the matrix M.)
Before giving the proof we make a few remarks concerning the ingredients of

the minimizer. Letting 1(R = Ho ® Nl, with 9-io 1 fl, where

R(s, t) = R° (s, t) + R1 (s, t)
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and R is the r.k. for fl,, a = 0, 1, we then have

Ci(t) =<	 = < Pi 7Ii, Rt >=< 77i, P1Rt >

= < yi, Rt >
= LiRt	 (1.3.10)

where Ri is the representer of evaluation at t in fi. We have used that the
projection P1 is self-adjoint. Furthermore,

< Si, Sj >=< 71i, bj >

since < iji — 	 >= 0, so that

<	 >= LiCj = Li(.)L.i(t)R1(s, t).

To prove the theorem, let the minimizer fa be of the form

	M 	 n

	fa=>1	 +>ci,i+p	 (1.3.11)

where p is some element in 7-iR perpendicular to 1, ... , 4 m , 1, ... , ^n. Any
element in lR has such a representation by the property of Hilbert spaces.
Then (1.3.6) becomes

1 Ily — (Ec + Td)IIZ + A(c'Ec + IIp1I2) 	(1.3.12)

and we must find c, d, and p to minimize this expression. It is then obvious that
11p1I 2 = 0, and a straightforward calculation shows that the minimizing c and d
of

are given by

n IIy — (Ec +Td)II 2 + )^c'Ec	 (1.3.13)

d = (T'M -1T) — 'T'M— 'y,	 (1.3.14)

c = M -1 (I —T(T'M -1T) -1T'M-1 )y.	 (1.3.15)

These forrnulae are quite unsuitable for numerical work, and, in fact, were
quite impractical when they appeared in Kimeldorf and Wahba (1971). Utreras
(1979) provided an equivalent set of equations with more favorable properties,
and another improvement was given in Wahba (1978b) with the aid of an
anonymous referee, who was later unmasked as Silverman. Multiplying the left
and right sides of (1.3.15) by M and substituting in (1.3.14) gives (1.3.16) and
multiplying (1.3.15) by T' gives (1.3.17):

	Mc + Td = y,	 (1.3.16)

	T'c = 0,	 (1.3.17)
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these being equivalent to (1.3.14) and (1.3.15).
To compute c and d, let the QR decomposition (see Dongarra et al. (1979))

of T be

	

T = (Q1 : Q2) (0 

/

J	 (1.3.18)

where Q1 is n x M and Q2 is n x (n — M), Q = (Q1 : Q2) is orthogonal and R
is upper triangular, with T'Q2 = OMx(n_M). Since T'c = 0, c must be in the
column space of Q2, giving c = Q27 for some -y an n — M vector. Substituting
c = Q2ry into (1.3.16) and multiplying through by Q2, recalling that Q'2T = 0,
gives

Q'2MQ2ry = Q2y,

c = Q27 = Q2(Q ' MQ2) -1Q' y,	 (1.3.19)

and multiplying (1.3.16) by Qí gives

	Rd = Qi(y — Mc).	 (1.3.20)

For later use the influence matrix A(A) will play an important role. A(\) is
defined as the matrix satisfying

L ifa

	

= A(A)y.	 (1.3.21)

L, fa

To obtain a simple formula for I — A(A) we observe by substitution in (1.3.11)
with p = 0 that

Lifa

	

=Td+Ec.	 (1.3.22)

L.f,,
Subtracting this from (1.3.16) gives

(I — A(i))y = n)c = nJ Q2(Q'2MQ2) -1Qiy

for any y, thus
I — A(\) = n)Q2(Q' MQ2) -1 Qz•	 (1.3.23)

Of course Q2 may be replaced by any n x (n — M) matrix whose columns are
any orthonormal set perpendicular to the M columns of T. We will discuss
efficient numerical methods for computing c and d in conjunction with data-
b ed methods for choosing ). later.

For the special spline smoothing problem we will demonstrate that fa of
(1.3.8) is a natural polynomial spline. Here

L=f = f(ti),

1IIP,f11 2 = f (f (m ) (u)) 2 du,
0

=
fo

1 (s — u)+- 1 (t — u) +—i

RI(s't)[(m — 1)!]2
du
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and

= R 1 (•,ti)•

It is easy to check that here

(•) E 
1r2m-1 for s E [0,ti]

E irm-1 for 8 E [ti, 1],

and
ei(•) E C2m-2 •

Thus

m	 n

fa(t) = > dvçbv(t) +	 ci^i(t) E 7 .m-1 for t E [t,!]
v=1	 i=1

E	 .2m-1 for t E [t t ]a ^ i+l

E C2m-2.

We will show that the condition T'c = 0 guarantees that fa E 7.m -1 for t E [0, tij,
as follows. For t <t1, we can remove the "+" in the formula for and write

n	%t (t — u)m-1 n
	c 	

—
(t) J	 (m — 1)[ > ci(ti — u)m -1 du, t < tl.	 (1.3.24)

	

i=1	 °	 i=1

But ^= 1 citk = 0 for k = 0,1, ... , m — 1 since T'c = 0, so that (1.3.24) is 0 for
t < tl and the result is proved.

We remark that it can be shown that lima—,, fa is the least squares
regression onto ¢ 1 , ... , ¢M and liman° fa is the interpolant to Li f = yi in
f that minimizes liP1 fit. The important choice of a from the data will be
discussed later.

1.4 The duality between r.k.h.s. and stochastic processes.

Later we will show how spline estimates are also Bayes estimates, with a certain
prior on f. This is no coincidence, but is a consequence of the duality between
the Hilbert space spanned by a family of random variables and its associated
r.k.h.s. The discussion of this duality follows Parzen (1962, 1970).

Let X(t), t E T be a family of zero-mean Gaussian random variables with
EX(s)X(t) = R(s, t). Let X be the Hilbert space spanned by X(t), t E T. This
is the collection of all random variables of the form

Z = Ea^X(t^)	 (1.4.1)

t E T, with inner product < Z1, Z2 >= EZ1Z2, and all of their quadratic
mean limits, i.e. Z is in X if and only if there is a sequence Z1, 1 = 1, 2, .. .
of random variables each of the form (1.4.1), with limi_,. E(Z — Zi) 2 =
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h^Z — Z, fl 2 —+ 0. Letting lR be the r.k.h.s. with r.k. R, we will see that
NR is isometrically isomorphic to X, that is, there exists a 1:1 inner product
preserving correspondence between the two spaces. The correspondence is given
by Table 1.1. This correspondence is clearly 1:1 and preserves inner products,

TABLE 1.1

The 1:1 correspondence between fR and X.

X	 ^-tR

X(t) — Rt

Ea^X(t^) — Ea^Rt,

limEa^X(t^) — limEajRt,.

since
< X (s), X (t) >= EX(s)X(t) = R(s, t) =< R8 , Rt > .

Let L be a bounded linear functional in l-iR with representer q. Then r7 is the
limit of a sequence of elements of the form Eat , R1 1 , by construction of fR.
The random variable Z corresponds to q if Z is the (quadratic mean) limit of
the corresponding sequence of random variables Eat, X (t!) and we can finally
denote this limiting random variable by LX (although X 1{R and we do not
think of L as a bounded linear functional applied to X). Then EZX(t) =
< ii, Rt >= r7(t) = LRt . Examples are Z = f w(t)X(t) dt and Z = X'(t), if they
exist.

We are now ready to give a simple example of the duality between Bayesian es-
timation on a family of random variables and optimization in an r.k.h.s. Consider
X(t), t E T a zero-mean Gaussian stochastic process with EX(s)X(t) = R(s, t).
Fix t for the moment and compute E{X(t)IX(t l ) = x 1 ,.. .,X(t) = xn }. The
joint covariance matrix of X(t), X (t l ), ... , X(t,) is

R(t, t)	 R(t,t1),..., R(t,tn )
R(t, t1)

Rn
R(t, t„)

where Rn is the n x n matrix with ijth entry R(ti ,t^). We will assume for
simplicity in this example that Rn is strictly positive definite. Using properties
of the multivariate normal distribution, as given, e.g., in Anderson (1958), we
have

E{X (t) I X(t) = xi, i = 1,... ,n}

= (R(t, t1),. . . , R(t, th)) R; 'x = f (t),	 (1.4.2)

say. The Gaussianness is not actually being used, except to call 1(t) a conditional

expectation. If 1(t) were just required to be the minimum variance unbiased
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linear estimate of X(t), given the data, the result J(t) would be the same,
independent of the form of the joint distribution and depending only on the
first and second moments.

Now consider the following problem. Find f E RR, the r.k.h.s. with r.k. R,
to minimize 11 f 11 2 suhject to f (t^) = xs, i = 1, ... , n. By a special case of the
argument given before, f must be of the form

n

f = 	 cj Rt, + p

for some p 1 to R,,.. . , R, that is, p satisfies < R 1 , p >= p(ti) = 0, i =
1, ...  n. II f 11' = c'Rnc + 11p1I2 and so (lpll = 0. Setting f (ti ) = >	 1 cj Rt, (ti ) =
xi, i = 1, ... , n gives x = (x1,. . . , xn )' = Re, and so the minimizer is f given
by

Rt,

f =x l R; h 	=f,

Rtn

which is exactly equal to f of (1.4.2)!

1.5 The smoothing spline and the generalized smoothing spline as
Bayes estimates.

We first consider

Wm =Ho®WW,

where W°n has the r.k.

R'(s,t) = fo  (—u)1)i ' (-u)1 ) ^ ' du.	 (1.5.1)

Let

1	 1X(t) = J ((m u)1
)!
 dW(u)	 (1.5.2)

0

where W(•) is the Wiener process. Formally, X C Bm , DtX = dW =

"white noise." X(•) is the m — 1 fold integrated Wiener process described
in Shepp (1966). We remind the reader that the Wiener process is a zero-
mean Gaussian stochastic process with stationary independent increments and
W(0) = 0. Stationary, independent increments means, for any 81, s2, 83, 84, the

joint distribution of W(s2) — W(sl) and W(s4) — W(s3) is the same as that of
W(..2 + h) — W(si + h) and W(s4 + h) — W(s3 + h), and, if the intervals [st, 82]
and [s3,s4] are nonoverlapping then W(s2) — W(si) and W(s4) — W(s3) are

independent. Integrale of the form

f g(u) dW (u) (1.5.3)
0
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are defined as quadratic-mean limits of the Riemann-Stieltjes sums

E g(ui) [W(ui+i) - W (ut)]	 (1.5.4)

for partitions {ui, ... , uL} of [0, 1] (see Cramer and Leadbetter (1967, Chap. 5)).
It can be shown to follow from the stationary independent increments property,
that E[W(u + h) - W(u)] 2 = const. h, for some constant, which we will take
here to be 1. Using the definition of (1.5.3) as a limit of the form (1.5.4), it can
be shown using the independent increments property, that if gl and 92 are in
G2[0,1], then

E f ' gi  (u) dW(u) f'g2(u)   dW (u) = fo
	1 g1(u)g2(u) du.	 (1.5.5)

Thus,

	EX(s)X(t) =fol
 (

t - u)+- 1 (s - u)+- 1
du=R'(s, t)	 (1.5.6)

 (m - 1)!	 (m - 1)!

and the Hilbert space spanned by the m - 1 fold integrated Wiener process is
isometrically isomorphic to W,°n .

We will consider two types of Bayes estimates, both of which lead to a
smoothing spline estimate. The first was given in Kimeldorf and Wahba (1971)
and might be called the "fixed effects" model, and the second might be called
the "random effects model with an improper prior," and was given in Wahba
(1978b).

The first model is

M

F(t) =j 8„çb„(t) + b 1 d' 2X(t), t E [0, 1],	 (1.5.7)

Yi = F(t)+f, i= 1,...,n.

Here 0 = (0k ,. .  , 8M)' is considered to be a fixed, but unknown, vector, b is a
positive constant, X(t), t E [0, 1] is a zero-mean Gaussian stochastic process
with covariance Rl (s, t) of (1.5.6), and e N N(0, v 2I). We wish to construct an
estimate of F(t), ^t E T, given Y; = yti, i = 1, ... , n.

An estimate F(t) of F(t) will be called unbiased with respect to 0 if

E(F(t)I0) = E(F(t)I0).

(Here, t is considered fixed.) Let F(t) be the minimum variance, unbiased (with
respect to 0) linear estimate of F(t) given Ya = y2 , i = 1, . .. , n. That is,

n

F(t)

for some ,8j (t) (linearity), and F(t) minimizes

E(F(t) — F(t))2
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(minimum variance) subject to

E(F(t) — F(t)I9) = 0 for all t E [0, 1].

We have the following theorem.

THEOREM 1.5.1. Let fa be the minimizer in W„a of

1 n 	% 1

— f(ti))2 +A J (f(m)(u))2 du.
n a=1	o

Then
F(t) = fa(t)

with \ = a 2 /nb.

Proof. A proof can be obtained by straightforward calculation (see Kimeldorf
and Wahba (1971)) .

The general version of this theorem follows. Let f = 7{o ® fl where 710 is
spanned by i , ... , ¢M, and h 1 has r.k. R' (s, t). Let

M

F(t) = E B„q„(t) + b 1/2X (t), t E T
v=1

where 9 is as before and EX(s)X(t) = R' (s, t). Let L 1 ,.. . , Ln be bounded linear

functionals on f; then EM 1 B„Lic„ is a well-defined constant and b1 /2 L;X is a
well-defined random variable in the Hilbert space spanned by X(t), t E T. Let

Yi=LiF+ti, i=1,...,n

where e is as before. Here and elsewhere it is assumed that the n x M matrix
T with ivth element	 is of rank M (that is, least squares regression on

. , Om is uniquely defined). Let Lo be another bounded linear functional on
fl. The goal is to estimate LoF (again a well-defined random variable), given

Yi = yi, i = 1, ... , n. Call the estimate L0F. Let LoF be the minimum variance,
linear, unbiased with respect to 9 estimate. Then_ n

LOF = E Qjyi
^=1

where 13 = (fi, ... fan ) is chosen to minimize

E(LTF — LoF) 2

subject to
E[(LoF — LoF)19] = 0.

We have the following theorem.
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THEOREM 1.5.2.

LoF = Lofa

where f, is the minimizer in N of

1 E(yi — Lif ) 2 + AllPif 11 2

n i=1

with A = o2 /nb.
This theorem says that if you want to estimate LOF, then you can find the

generalized smoothing spline fa for the data and take Lo fa as the estimate.
A practical application of this result that we will return to later is the

estimation of f'(t) given data:

yi=f(t: )+es,	 i=1,2,. ..,n.

One can take the smoothing spline for the data and use its derivative as an
estimate of f'.

The second, or "random effects model with an improper prior," leads to the
same smoothing spline, and goes as follows:

M

	F(t) = E 6„OV(t) + b112 X (t),	 (1.5.8)
V=1

Y = LiF + et,

where everything is as before except 0, which is assumed to be N(0, al), and we
will let a —i oo.

THEOREM 1.5.3. Let

Fa (t) = E(F(t) I 1: = yE, i = 1,... , n)

and let fa be the minimizer of

— L^f) 2 +aIIPif11 2n
E=1

with A = o 2 /nb. Then, for each fixed t,

lima ! t) = f,,(t).
oo

To prove this, by the correspondence between 1{R' and the Hilbert space
spanned by X(t), t E T, we have

E(L=X)X(t) = L i ( 8)R 1 (s,t) = £t(t),

ELsXLiX = Li(e)Lj(t)Rl(s,t) =< 1;,,^j > .
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Then, letting Y = (Y1 ,. . . , Y,,)', we have

j.i(t) 	 (t)
EF,I (t)Y = aT	 + b

OM (t) J	 e (t)
EYY' _ aTT' + bE + o21	 (1.5.9)

where T and E are as in (1.3.7) and (1.3.9).
Setting A = Q 2 /nb, 71 = a/b and M = E + nAI gives

E(Fa.(t)IY = y) _ (11(t),...,çbM(t))11T'(zzTT' +M)-iy

+ (e1(t), ... , C.(t))( 77TT' + M)-'y. 	(1.5.10)

Coinparing (1.3.14), (1.3.15), and (1.5.8), it only remains to show that

lim 7IT'(i7TT' + M) -1 = (T'M- 1 T) - 1 T'M-1 	(1.5.11)
n- 00

and

lim (?PTT' + M) -1 = M-1 (I — T(T'M- 1 T) - 1 T'M-1 ).	 (1.5.12)

It can be verified that

(?PTT' + M) -1

= M-i — M-1T(T'M-1T) -1 {I +,j-1(T'M-1T)- 1 }-1T'M -1,

expanding in powers of 71 and letting ij — oo completes the proof.


