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Trees and forests

Agenda

I Regression trees: Splitting the covariate space.

I Random forests: Many trees.
Using bootstrap aggregation to improve predictions.

I Causal trees: Predicting heterogeneous causal effects.
Ground truth not directly observable, for cross-validation.
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Trees and forests

Takeaways for this part of class

I Trees partition the covariate space and form predictions as local averages.

I Iterative splitting of partitions allows us to be more flexible in regions of the covariate
space with more variation of outcomes.

I Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads to
random forests when applied to trees.

I Things get more complicated when we want to predict heterogeneous causal effects,
rather than observable outcomes.

I This is because we do not directly observe a ground truth that can be used for tuning.
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Regression trees

Regression trees

I Suppose we have i.i.d. observations (Xi ,Yi) and want to estimate
g(x) = E[Y |X = x].

I Suppose we furthermore have a partition of the regressor space into subsets
(R1, . . . ,RM).

I Then we can estimate g(·) by averages in each element of the partition:

ĝ(x) = ∑
m

cm ·1(x ∈ Rm)

cm =
∑i Yi ·1(Xi ∈ Rm)

∑i 1(Xi ∈ Rm)
.

I This is a regression analog of a histogram.
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Regression trees

Recursive binary partitions
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Regression trees

Constructing the partition

I How to choose the partition?

I Start with the trivial partition with one element.

I Greedy algorithm (CART): Iteratively split an element of the partition,
such that the in-sample prediction improves as much as possible.

I That is: Given (R1, . . . ,RM),
I For each Rm, m = 1, . . . ,M, and
I for each Xj , j = 1, . . . ,k ,
I find the xj,m that minimizes the mean squared error,

if we split Rm along variable Xj at xj,m.
I Then pick the (m, j) that minimizes the mean squared error,

and construct a new partition with M +1 elements.
I Iterate.
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Regression trees

Tuning and pruning

I Key tuning parameter: Total number of splits M.

I We can optimize this via cross-validation.

I CART can furthermore be improved using “pruning.”
I Idea:

I Fit a flexible tree (with large M) using CART.
I Then iteratively remove (collapse) nodes.
I To minimize the sum of squared errors,

plus a penalty for the number of elements in the partition.

I This improves upon greedy search.
It yields smaller trees for the same mean squared error.
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Trees and forests

Regression trees

From trees to forests
I Trees are intuitive and do OK, but they are not amazing for prediction.
I We can improve performance a lot using either bootstrap aggregation (bagging) or

boosting.
I Bagging:

I Repeatedly draw bootstrap samples (X b
i ,Y

b
i )

n
i=1 from the observed sample.

I For each bootstrap sample, fit a regression tree ĝb(·).
I Average across bootstrap samples to get the predictor

ĝ(x) =
1
B

B

∑
b=1

ĝb(x).

I This is a technique for smoothing predictions.
The resulting predictor is called a “random forest.”

I Possible modification:
Restrict candidate splits to a random subset of predictors in each tree-fitting step.
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Regression trees

An empirical example (courtesy of Jann Spiess)
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Regression trees

OLS
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Regression trees

Regression tree
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Regression trees

Random forest
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Regression trees

Causal trees
I Suppose we observe i.i.d. draws of (Yi ,Di ,Xi), and wish to estimate

τ(x) = E[Y |D = 1,X = x]−E[Y |D = 0,X = x].

I Motivation: This is the conditional average treatment effect
under an unconfoundedness assumption on potential outcomes,

(Y 0,Y 1)⊥ D|X .

I This is relevant, in particular, for targeted treatment assignment.
I We might, for a given partition R = (R1, . . . ,RM), use the estimator

τ̂(x) = ∑
m

(
c1

m− c0
m

)
·1(x ∈ Rm)

cd
m =

∑i Yi ·1(Xi ∈ Rm,Di = d)

∑i 1(Xi ∈ Rm,Di = d)
.
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Trees and forests

Regression trees

Targets for splitting and cross-validation

I Recall that CART uses greedy splitting.
It aims to minimize in-sample mean squared error.

I For tuning, we proposed to use the out-of-sample mean squared error
in order to choose the tree depth.

I Analog for estimation of τ(·): Sum of squared errors (minus normalizing constant),

SSE(S ) = ∑
i∈S

(
(τi − τ̂(Xi))

2− τ
2
i

)
,

where S is either the estimation sample, or a hold-out sample for cross-validation.
(The term τ2

i is added as a convenient normalization.)

I Problem: τi is not observed.
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Regression trees

Targets continued
I Solution: We can rewrite SSE(S ),

SSE(S ) = ∑
i∈S

(τ̂(Xi ,R) · (τ̂(Xi ,R)−2τi)) .

I Suppose we split our sample into (S 1,S 2), use S 1 for estimation, and S 2 for
tuning. Let τ̂j(X ,R) be the estimator based on sample S j .

I An estimator of SSE(S 2) (for tuning) is then given by

ŜSE(S 2) = ∑
i∈S

(τ̂1(Xi ,R) · (τ̂1(Xi ,R)−2τ̂2(Xi ,R))) .

I An analog to the in-sample sum of squared errors (for CART splitting) is given by

ŜSE(S 1) = ∑
i∈S

(
−τ̂1(Xi ,R)2) .
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