Econ 2148, fall 2019 Trees, forests, and causal trees

Maximilian Kasy

Department of Economics, Harvard University

Agenda

- Regression trees: Splitting the covariate space.
- Random forests: Many trees.
 Using bootstrap aggregation to improve predictions.
- Causal trees: Predicting heterogeneous causal effects.
 Ground truth not directly observable, for cross-validation.

Takeaways for this part of class

- Trees partition the covariate space and form predictions as local averages.
- Iterative splitting of partitions allows us to be more flexible in regions of the covariate space with more variation of outcomes.
- Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads to random forests when applied to trees.
- Things get more complicated when we want to predict heterogeneous causal effects, rather than observable outcomes.
- This is because we do not directly observe a ground truth that can be used for tuning.

- Suppose we have i.i.d. observations (X_i, Y_i) and want to estimate g(x) = E[Y|X = x].
- Suppose we furthermore have a partition of the regressor space into subsets (R_1, \ldots, R_M) .
- Then we can estimate $g(\cdot)$ by averages in each element of the partition:

$$egin{aligned} \hat{g}(x) &= \sum_m c_m \cdot \mathbf{1}(x \in R_m) \ c_m &= rac{\sum_i Y_i \cdot \mathbf{1}(X_i \in R_m)}{\sum_i \mathbf{1}(X_i \in R_m)} \end{aligned}$$

This is a regression analog of a histogram.

Recursive binary partitions

Constructing the partition

- How to choose the partition?
- Start with the trivial partition with one element.
- Greedy algorithm (CART): Iteratively split an element of the partition, such that the in-sample prediction improves as much as possible.
- That is: Given (R_1, \ldots, R_M) ,
 - For each R_m , $m = 1, \ldots, M$, and
 - for each X_j , j = 1, ..., k,
 - find the x_{j,m} that minimizes the mean squared error, if we split R_m along variable X_j at x_{j,m}.
 - ► Then pick the (m, j) that minimizes the mean squared error, and construct a new partition with M + 1 elements.
 - Iterate.

Tuning and pruning

- ► Key tuning parameter: Total number of splits *M*.
- We can optimize this via cross-validation.
- CART can furthermore be improved using "pruning."
- Idea:
 - ► Fit a flexible tree (with large *M*) using CART.
 - Then iteratively remove (collapse) nodes.
 - To minimize the sum of squared errors, plus a penalty for the number of elements in the partition.
- This improves upon greedy search.

It yields smaller trees for the same mean squared error.

From trees to forests

- > Trees are intuitive and do OK, but they are not amazing for prediction.
- We can improve performance a lot using either bootstrap aggregation (bagging) or boosting.
- Bagging:
 - Repeatedly draw bootstrap samples $(X_i^b, Y_i^b)_{i=1}^n$ from the observed sample.
 - For each bootstrap sample, fit a regression tree $\hat{g}^{b}(\cdot)$.
 - Average across bootstrap samples to get the predictor

$$\hat{g}(x) = rac{1}{B}\sum_{b=1}^{B}\hat{g}^b(x).$$

- This is a technique for smoothing predictions. The resulting predictor is called a "random forest."
- Possible modification:

Restrict candidate splits to a random subset of predictors in each tree-fitting step.

An empirical example (courtesy of Jann Spiess)

OLS

Regression tree

Random forest

Causal trees

Suppose we observe i.i.d. draws of (Y_i, D_i, X_i) , and wish to estimate

$$\tau(x) = E[Y|D = 1, X = x] - E[Y|D = 0, X = x].$$

 Motivation: This is the conditional average treatment effect under an unconfoundedness assumption on potential outcomes,

$$(Y^0, Y^1) \perp D|X.$$

- > This is relevant, in particular, for targeted treatment assignment.
- We might, for a given partition $\mathscr{R} = (R_1, \ldots, R_M)$, use the estimator

$$egin{aligned} \hat{t}(x) &= \sum_m \left(c_m^1 - c_m^0
ight) \cdot \mathbf{1}(x \in R_m) \ c_m^d &= rac{\sum_i Y_i \cdot \mathbf{1}(X_i \in R_m, D_i = d)}{\sum_i \mathbf{1}(X_i \in R_m, D_i = d)}. \end{aligned}$$

Targets for splitting and cross-validation

- Recall that CART uses greedy splitting. It aims to minimize in-sample mean squared error.
- For tuning, we proposed to use the out-of-sample mean squared error in order to choose the tree depth.
- Analog for estimation of $\tau(\cdot)$: Sum of squared errors (minus normalizing constant),

$$SSE(\mathscr{S}) = \sum_{i \in \mathscr{S}} \left((\tau_i - \hat{\tau}(X_i))^2 - \tau_i^2 \right),$$

where \mathscr{S} is either the estimation sample, or a hold-out sample for cross-validation. (The term τ_i^2 is added as a convenient normalization.)

• Problem: τ_i is not observed.

Targets continued

Solution: We can rewrite $SSE(\mathscr{S})$,

$$SSE(\mathscr{S}) = \sum_{i \in \mathscr{S}} (\hat{\tau}(X_i, \mathscr{R}) \cdot (\hat{\tau}(X_i, \mathscr{R}) - 2\tau_i)).$$

- Suppose we split our sample into (𝒴¹,𝒴²), use 𝒴¹ for estimation, and 𝒴² for tuning. Let *î_j(X,𝔅)* be the estimator based on sample 𝒴^j.
- An estimator of $SSE(\mathscr{S}^2)$ (for tuning) is then given by

$$\widehat{SSE}(\mathscr{S}^2) = \sum_{i \in \mathscr{S}} (\hat{\tau}_1(X_i, \mathscr{R}) \cdot (\hat{\tau}_1(X_i, \mathscr{R}) - 2\hat{\tau}_2(X_i, \mathscr{R}))).$$

An analog to the in-sample sum of squared errors (for CART splitting) is given by

$$\widehat{SSE}(\mathscr{S}^{1}) = \sum_{i \in \mathscr{S}} \left(-\widehat{\tau}_{1}(X_{i}, \mathscr{R})^{2} \right).$$

References

- Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1. Springer series in statistics Springer, Berlin, chapters 8 and 9.
- Athey, S. and Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360.