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Introduction
What is weak identification?

In many economic contexts, data contains little information
about structural or causal parameters
When this happens, standard approaches to estimation and
inference can break down

Estimators may be biased with highly non-normal distributions
Tests may have size far from the desired level
Non-robust procedures can lead to highly misleading inferences



Introduction
Examples of weak identification

Best-studied form of weak identification weak instruments.
Arises in a number of empirical contexts, e.g. estimating

Returns to schooling (Bound, Jaeger, and Baker, 1995)
The elasticity of inter-temporal substitution (Yogo, 2004)
Taylor rule parameters (Mavroeidis, 2010)

Weak identification also issue in wide range of nonlinear
models, e.g.

DSGE models (Canova and Sala, 2009)
New Keynesian Phillips curve models (Mavroeidis,
Plagbourg-Moller and Stock, 2013)
Nonlinear regression models (D. Andrews and Cheng, 2013)
BLP (Armstrong, 2016)



Introduction
Plan for the talk

I’ll start by talking about three examples

Linear IV
BLP using product characteristics as instruments
DSGE model

I’ll then talk about

Why the usual approximations break down
How we can assess if conventional procedures are reliable in a
given application
Robust inference procedures
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Three Examples
Weak IV model

Consider the linear model

Yt = Xtθ + εt

Xt = Z ′tπ + vt

with Zt a vector of instruments, E [Ztεt ] = E [Ztvt ] = 0
Can estimate θ by two-stage least squares or two-step GMM,
test H0 : θ = θ0 with a t-test



Three Examples
Weak IV model

t-tests may over-reject when π too small
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Figure: Size of nominal 5% t-tests for H0 : β = 5 in homoskedastic linear
IV model with 500 observations and 5 instruments. Correlation of (εt , vt)
is −.98.



Three Examples
BLP with product characteristic instruments

Armstrong (2016)
Suppose we observe aggregate data on a market of single
product firms engaged in Bertrand competition

Then if we consider large-market asymptotics, for the logit or
random-coefficient logit models, strategies using the
characteristics of other products as instruments have
asymptotically declining identifying power
Estimates based on these instruments will be inconsistent,
even if we know the distribution of random coefficients

For data from many markets, shows a similar result for logit
model

Characteristic instruments asymptotically irrelevant if number
of firms per market increases faster than number of markets



Three Examples
DSGE model

Consider the toy DSGE model

bEtπt+1 + κxt − πt = 0
rt − Etπt+1 − ρ∆at = Etxt+1 − xt

1
bπt + ut = rt

where xt is output, πt is inflation, and rt is an unobserved interest
rate

∆at = ρ∆at−1 + εa,t ; ut = δut−1 + εu,t

(εa,t , εu,t)
′ ∼ N

(
0,
[
σ2
a 0
0 σ2

u

])
.



Three Examples
DSGE model

In joint work with Anna Mikusheva, show model is unidentified
when ρ = δ

Classical statistical approaches perform poorly when |ρ− δ|
small

ρ− δ 0.05 0.1 0.2 0.3 0.5 0.7
Size of 5% Test 88.9% 79.8% 52.5% 28.1% 12.1% 9.8%

Table: Size of nominal 5% Wald tests based on 200 observations. From
Andrews and Mikusheva (2014)
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Why do Conventional Techniques Fail?
Source of usual asymptotic approximations

Consider a GMM model with moment condition g (Xt , θ),
identifying assumption

E [g (Xt , θ0)] = 0

Define gT (θ) = 1
T

∑
g (Xt , θ)

Usual GMM approximations are exact in finite samples under
three assumptions

1 gT (θ) = gT (θ0) + ∂
∂θgT (θ0) (θ − θ0)

2 ∂
∂θgT (θ0) full rank and non-random

3
√
TgT (θ0) ∼ N (0,Σ (θ0)) for Σ (θ0) known

Breakdown of usual approximations means one (or more) of
these must be a poor approximation to finite-sample behavior



Why do Conventional Techniques Fail?
Source of usual asymptotic approximations

Assumption (3) justified by the central limit theorem

Holds regardless of model identification status

Assumptions (1) and (2) justified using identification
assumptions

Derived by assuming E [g (Xt , θ)] = 0 only if θ = θ0, departs
rapidly from zero for θ 6= θ0
Since assumed E [g (Xt , θ)] departs rapidly from zero,
E
[
∂
∂θg (Xt , θ0)

]
must be large

In particular larger than variance of ∂
∂θ

gT (θ0), justifying (2)

Thus, can reject values θ outside a small neighborhood of θ0
Over small neighborhood of θ0, first order Taylor
approximations are reasonable, justifying (1)



Why do Conventional Techniques Fail?
Example: Linear IV

In linear IV model, (1) holds exactly, and (3) is a reasonable
approximation
When instruments are weak, leads to a breakdown of (2)

IV moment condition gT (θ) = 1
T

∑
(Yt − Xtθ)Zt

∂

∂θ
gT (θ) = − 1

T

∑
XtZt = − 1

T

∑
(ZtZ

′
t )π +

1
T

∑
Ztvt

When π small, these terms are of the same order
∂
∂θ

gT (θ) approximately normal with non-degenerate variance



Why do Conventional Techniques Fail?
Example: DSGE

Suppose we estimate a DSGE model by matching moments
Have some function h (Xt) , take

g (Xt , θ) = h (Xt)− h̃ (θ)

Here, assumption (2) holds exactly, and (3) is again a
reasonable approximation
In joint work with Anna Mikusheva, show that h̃ (θ) can be
highly nonlinear relative to the sample size

(1) is a very poor approximation
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Detecting Weak Identification
How can we tell when the usual approximations fail?

We can try to check whether (1)-(3) are reasonable
approximations

What defines “reasonable”?

The first stage F-statistic can be viewed as checking (2)

With a single endogenous regressor and k instruments, is of
the form

F =
1
k
· ∂
∂θ

gT (θ)′ V̂ar

(
∂

∂θ
gT (θ)

)−1
∂

∂θ
gT (θ)

Will be large when the mean of ∂
∂θgT (θ) is large relative to its

variance
Stock and Yogo (2005) show that in IV with homoskedastic
errors can use F to assess bias of estimators and size distortion
in tests

Critical values for size distortion larger than “rule of thumb”



Detecting Weak Identification
The trouble with the first stage F-statistic

Unfortunately, in overidentifed models Stock and Yogo (2005)
results rely heavily on the assumption of iid homoskedastic
data
Olea and Pflueger (2013) show that conventional F statistic
not a reliable guide to bias when used with heteroskedastic,
serially correlated, or clustered data
In Andrews (2018), I show in simulation that, even when using
robust formulations of F statistic, can get large values of F
together with distortions for conventional procedures

Have an example where mean of first stage F is 100,000,
t-tests have 10% size distortion



Detecting Weak Identification
Alternative approaches

In joint work with Anna Mikusheva, have given approach to
checking (1) in moment-matching and minimum-distance
models

g (Xt , θ) = h (Xt)− h̃ (θ)
Based on measuring the curvature of h̃
Gives bounds on behavior for minimum-distance statistics

Both this and the first stage F-statistic are based on measuring
“inputs”

What about comparing “outputs”?



Detecting Weak Identification
Evaluating conventional approximations

We can check the implications of the usual approximations

Contours of GMM objective function should be approximately
elliptical
If using Bayesian methods, posterior should be approximately
normal
Bootstrap distribution of estimator should be approximately
normal

However, evaluating identification in this way will introduce
size and coverage distortions

If I decide whether to use an identification-robust confidence
set based on the data, I’m essentially using a pretest
Pretest bias can be severe



Detecting Weak Identification
Pretest with bounded distortions

In Andrews (2018), I show that one can detect weak
identification by comparing robust and non-robust confidence
sets

For all the commonly-used non-robust confidence sets, we can
create asymptotically equivalent robust confidence sets
Compare (e.g.) 95% non-robust confidence set with 90%
robust

If usual approximations OK, non-robust should contain robust

By assessing identification in this way, limit pretest bias

i.e. at most 5% coverage distortion above
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Robust Inference
Robust Test Statistics

Even under weak identification, can still construct valid and
(potentially) informative tests
Based on asymptotic approximations which hold regardless of
identification strength

Simplest is S statistic of Stock and Wright (2000):

S (θ) = gT (θ)′ V̂ar (gT (θ))−1 gT (θ)

Can show that S (θ0)→d χ
2
k under very weak assumptions

In just-identified models, performs well in wide range of
contexts

Tests based on S asymptotically inefficient over-identified
models under conventional asymptotics

Kleibergen (2005) suggests alternative statistic K
Also depends on ∂

∂θgT (θ)



Robust Inference
Robust Test Statistics

Tests based on K are (locally) asymptotically efficient when
identification is strong

Can have very poor power when identification is weak

Many papers have studied different ways of combining
information in these statistics

Moreira (2003), Kleibergen (2005), Andrews (2016)
D. Andrews Moreira and Stock (2006) show that test of
Moreira (2003) is “nearly” uniformly most powerful in linear IV
models with one endogenous regressor and homoskedastic
errors

Analogous result fails for non-homoskedastic models

However, Moreira and Ridder (2018) show that all tests based
on (S ,K ) have poor power under some DGPs

Though not clear that commonly arise in practice



Robust Inference
Optimal Robust Inference

Several recent papers have addressed the question of weighted
average power maximizing tests

Olea (2018), Moreira and Moreira (2015), Moreira and Ridder
(2018)
Definition of optimality requires specifying a weight function:
papers propose defaults for IV models

For general GMM models, much less is known



Robust Inference
Robust Confidence Sets

Dufour (1997): If parameter space is unbounded and
identification can be arbitrarily weak, any robust confidence set
must be unbounded with positive probability

Conventional “estimate ± standard error” confidence sets have
zero coverage

To form a robust confidence set, invert robust tests

For φ (θ) a test of θ0 = θ

CS = {θ : φ (θ) does not reject}

Easy to compute if θ is low-dimensional
For high-dimensional θ, curse of dimensionality



Robust Inference
Inference on Subsets of Parameters

All of the results above are for inference on the full vector of
GMM parameters
Often we are interested in some lower-dimensional β = f (θ)

e.g. β = θi , to report confidence sets for a single parameter

Unfortunately this is a hard problem

Simplest option: projection method, popularized by Dufour
Given a confidence set CSθ, let

CSβ = {β : β = f (θ) , θ ∈ CSθ}

This will typically be inefficient under strong identification



Robust Inference
Improving on Projection

Three main types of approach proposed so far to improve on
this simple projection approach
Methods for models with additional structure

D. Andrews and Cheng (2012): known scalar parameter which
controls identification
Andrews and Mikusheva (2016): Minimum-distance models
Guggenberger, Kleibergen, Mavroeidis, and Chen (2012):
Homoskedastic linear IV

Choosing confidence sets to reduce conservativeness of
projection under strong identification

Chaudhuri and Zivot (2011): construct confidence set for θ
such that can come arbitrarily close to efficiency if model is
strongly identified
Extended by D. Andrews (2017)



Robust Inference
Improving on Projection: Numerically Intensive methods

Numerically intensive methods

Elliott Mueller and Watson (2015), Moreira and Moreira
(2013)

Derive weighted average power optimal tests in parametric
models
Numerically daunting in cases with high-dimensional nuisance
parameters unless have special structure, e.g. Moreira and
Moreira (2013) can do linear IV with non-homoskedastic
errors and multiple instruments

Bonferroni methods: McCloskey (2017)
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Recent Projects
Unbiased Estimation in IV

When instruments are weak, conventional estimators are biased
Hirano and Porter (2015): in usual parameter space, there
exists no mean, median, or quantile unbiased estimators in the
linear IV model
Result in joint work with Tim Armstrong: if sign of first stage
is known, can construct an unbiased estimator for the
coefficient θ on the endogenous regressor in a finite-sample
normal model

Implies an asymptotically unbiased estimator under both weak
and strong instrument asymptotics



Recent Projects
Unbiased Estimation in IV

In just-identified model,(
ξ1
ξ2

)
=

(
(Z ′Z )−1 Z ′Y

(Z ′Z )−1 Z ′X

)
∼ N

((
πθ
π

)
,Σ

)
where

Σ =

(
σ2

1 σ12
σ12 σ2

2

)
.

Unbiased estimator under π > 0 is

θ̂U = τ̂

(
ξ1 −

σ12

σ2
2
ξ2

)
+
σ12

σ2
2

where E [τ̂ ] = 1
π . By comparison

θ̂2SLS =
1
ξ2

(
ξ1 −

σ12

σ2
2
ξ2

)
+
σ12

σ2
2



Recent Projects
Gaussian process approximation

Joint work with Anna Mikusheva
Under mild conditions,

√
T (gT (·)− E [gT (·)])⇒ G (·)

for G a mean-zero Gaussian process with consistently
estimable covariance function

Σ
(
θ, θ̃
)

= Cov
(
G (θ) ,G

(
θ̃
))



Recent Projects
Gaussian process approximation

Suggests the approximate model

gT (·) = E [gT (·)] +
1√
T
G (·)

where Σ is known
Can think of E [gT (·)] as an unknown parameter
For testing H0 : θ = θ0, under null have E [gT (θ)] = 0

E
[
gT
(
θ̃
)]

for θ̃ 6= θ is a functional nuisance parameter
Determines identification status of model



Recent Projects
Sufficient statistic

One classical approach to dealing with nuisance parameters:
condition on a sufficient statistic

Conditional on a sufficient statistic, the nuisance parameter
has no effect on inference

We show that in exact Gaussian model,

hT (·) = gT (·)− Σ (·, θ) Σ (θ, θ)−1 gT (θ)

is a sufficient statistic for E
[
gT

(
θ̃
)]

, θ̃ 6= θ under the null

Conduct inference conditional on hT (·)

We show that this gives asymptotically valid tests regardless of
model identification



Conclusion
Robust Inference

Commonly-used approaches to inference can be unreliable
when the data is uninformative

Arises in both linear and non-linear models

Pretesting for identification can introduce distortions

Approaches based on F-statistic not in general valid in
overidentified or nonlinear models

To avoid drawing unreliable conclusions, can use robust
inference procedures

Theory complete for homoskedastic linear IV
In progress for non-homoskedastic IV
Procedures available but much still unknown for nonlinear
models and subset inference



The End

Thank you!



References
Andrews, D. (2017), ‘Identification-robust subvector
inference’, Unpublished Manuscript.
Andrews, D. and Cheng, X. (2012), ’Estimation and inference
with weak, semi-strong, and strong identification’,
Econometrica 80, 2153–2211.
Andrews, D. and Cheng, X. (2013), ’Maximum likelihood
estimation and uniform inference with sporadic identification
failure’, Journal of Econometrics 173, 36-56.
Andrews, D., Moreira, M. and Stock, J. (2006), ’Optimal
two-sided invariant similar tests of instrumental variables
regression,’ Econometrica 74, 715–752.
Andrews, I. (2016), ’Conditional linear combination tests for
weakly identified models,’ Econometrica 84, 2155–2182.
Andrews, I. (2018), ’Valid Two-Step Identification-Robust
Confidence Sets for GMM’. Review of Economics and
Statistics, 110(2), 337-348.



References
Andrews, I. and Mikusheva, A. (2018), ’A geometric approach
to weakly identified econometric models,’ Econometrica 84,
1249-1264.
Andrews, I. and Mikusheva, A. (2016), ’Conditional inference
with a functional nuisance parameter’, Econometrica 84,
1571-1612.
Andrews, I. and Mikusheva A. (2014), ’Weak Identification in
Maximum Likelihood: A Question of Information’, American
Economic Review: Papers and Proceedings, 104, 195-199
Armstong, T. (2014), ’Large Market Asymptotics for
Differentiated Product Demand Estimators with Economic
Models of Supply’, Econometrica 84, 1961-1980.
Bound, J., Jaeger, D. & Baker, R. (1995), ’Problems with
instrumental variables estimation when the correlation between
the instruments and the endogeneous explanatory variable is
weak’, Journal of the American Statistical Association 90,
443-450.



References

Canova, F. and Sala, L. (2009), ‘Back to square one:
Identification issues in dsge models’, Journal of Monetary
Economics 56, 431–449.
Chaudhuri, S. and E. Zivot (2011), ‘A new method of
projection-based inference in gmm with weakly identified
nuisance parameters’, Journal of Econometrics 164, 239–251.
Dufour, J.M. (1997), ’Some impossibility theorems in
Econometrics with Applications to Structural and Dynamic
Models’, Econometrica 65, 1365-1387.
Elliott, G., Mueller, U. and Watson, M. (2015), ’Nearly
optimal tests when a nuisance parameter is present under the
null hypothesis’, Econometrica 83, 771-811.
Guggenberber P., F. Kleibergen, S. Mavroeidis, L. Chen
(2012), ’On the Asymptotic Sizes of subset Anderson-Rubin
and Lagrange Multiplier Tests in Linear Instrumental Variables
Regression’, Econometrica 80, 2649-2666.



References

Hirano, K. & Porter, J. (2015), ’Location properties of point
estimators in linear instrumental variables and related models’,
Econometric Reviews, 34 (6-10), 720-733.
Kleibergen, F. (2005), ‘Testing parameters in gmm without
assuming they are identified’, Econometrica 73, 1103–1123.
Mavroeidis, S. (2010). ’Monetary Policy Rules and
Macroeconomic Stability: Some New Evidence’ American
Economic Review 100, 491-503.
Mavroeidis, S., M. Plagborg-Moller, and J. Stock (2014).
’Empirical evidence on inflation expectations in the new
keynesian phillips curve’. Journal of Economic Literature, 52:
124-88.
McCloskey, A. (2017). ’Bonferroni-Based Size-Correction for
Nonstandard Testing Problems’. Journal of Econometrics, 200,
17-35.



References

Moreira, M. (2003), ‘A conditional likelihood ratio test for
structural models’, Econometrica 71, 1027–1048.
Moreira, H. and M. Moreira, (2013), ’Contributions to the
theory of optimal tests’. Unpublished Manuscript.
Moreira, H. and M. Moreira, (2015), ‘Optimal Two-Sided Tests
for Instrumental Variables Regression with Heteroskedastic and
Autocorrelated Errors’. Unpublished Manuscript.
Moreira, M. and G. Ridder, (2018), ‘Optimal Invariant Tests in
an Instrumental Variables Regression with Heteroskedastic and
Autocorrelated Errors’. Unpublished Manuscript.
Olea, J. (2018), ’Efficient conditionally similar tests:
Finite-sample theory and larges sample applications’.
Unpublished Manuscript.
Olea, J.L.M. and C. Pfleuger (2013), ‘A robust test for weak
instruments’, Journal of Business and Economic Statistics 31,
358–369.



References

Stock, J. and Wright, J. (2000), ‘Gmm with weak
identification’, Econometrica 68, 1055–1096.
Stock, J. and M. Yogo (2005), Identification and Inference for
Econometric Models: Essays in Honor of Thomas Rothenberg,
Cambridge University Press, chapter Testing for Weak
Instruments in Linear IV Regression, 80–108.
Yogo, M. (2004), ‘Estimating the elasticity of intertemporal
substitution when instruments are weak’, Review of Economics
and Statistics 86, 797–810.


	Introduction
	Three Examples
	Why do Conventional Techniques Fail?
	Detecting Weak Identification
	Robust Inference
	Recent Projects
	Conclusion

