
Introduction to R

Maximilian Kasy

Fall 2019

Agenda

I Comparison of R to its alternatives
I Ressources for learning R
I Installing R
I An introductory R session

Why R?

I Most popular environment in statistics and machine learning communities.
I Open source, fast growing ecosystem.
I Packages for almost everything:

I Data processing and cleaning
I Data visualization
I Interactive web-apps
I Typesetting, writing articles and slides
I The newest machine learning routines
I . . .

I Accomplishes the things you might be used to do doing in Stata (data processing,
fitting standard models) and those you might be used to doing in Matlab
(numerical programming).

I High level language that (mostly) avoids having to deal with technicalities.

Alternatives to R

I Stata (proprietary): Most popular statistical software in economics, easy to use for
standard methods, not a good programming language.

I Matlab (proprietary): Numerical programming environment, matrix based.
Programming in (base) R is quite similar to Matlab.

I Python (open): General purpose programming language, standard in industry, not
targeted toward data analysis and statistics, but lots of development for machine
learning. More overhead to write relative to R.

I Julia (open): New language for numerical programming, fast, increasingly popular
in macro / for solving complicated structural models, not geared toward data
analysis.

Installing R, RStudio, and tidyverse

I Install R:
https://cran.rstudio.com/

I Install RStudio:
https://www.rstudio.com/products/rstudio/download/

I Install tidyverse packages: Type in RStudio terminal
install.packages("tidyverse")

I You will often install other packages using this command.

https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/

Ressources for learning R

I An Introduction to R
Complete introduction to base R. My recommended place to get started.
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

I R for Data Science
Introduction to data analysis using R, focused on the tidyverse packages. If your
goal is to find a substitute for Stata, start here.
http://r4ds.had.co.nz/

I Advanced R
In-depth discussion of programming in R. Read later, if you want to become a good
R programmer.
https://adv-r.hadley.nz/

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
http://r4ds.had.co.nz/
https://adv-r.hadley.nz/

Ressources for data visualization in R

I Data Visualization - A Practical Introduction
Textbook on data visualization, using ggplot2. http://socviz.co/

I ggplot2 - Elegant Graphics for Data Analysis
In depth discussion of R-package for data vizualization.
http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf

I An Economist’s Guide to Visualizing Data
Guidelines for good visualizations (not R-specific).
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.1.209

I A Layered Grammar of Graphics
The theory behind ggplot2.
https://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf

http://socviz.co/
http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.28.1.209
https://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf

Ressources for learning extensions to R

I Programming interactive R-apps using Shiny
Useful if you want to make your methods easy to use for people not familiar with R,
or want to include interactive visualizations in web-pages.
https://shiny.rstudio.com/articles/

I Markdown
A lightweight markup language.
https://www.markdownguide.org/

I R markdown Integrate code and output into typeset documents and slides. These
slides are written in R markdown. https://rmarkdown.rstudio.com/lesson-1.html

I RStudio Cheat Sheets
Cheatsheets for numerous packages.
https://www.rstudio.com/resources/cheatsheets/

https://shiny.rstudio.com/articles/
https://www.markdownguide.org/
https://rmarkdown.rstudio.com/lesson-1.html
https://www.rstudio.com/resources/cheatsheets/

A sample session in R

I Please type the commands on the following slides in your RStudio terminal.
I This session is based on

https://en.wikibooks.org/wiki/R_Programming/Sample_Session
I R can be used as a simple calculator and we can perform any simple computation.

Sample Session
This is a comment
2 # print a number

2+3 # perform a simple calculation

log(2) # natural log

https://en.wikibooks.org/wiki/R_Programming/Sample_Session

A sample session in R

I R can be used as a simple calculator and we can perform any simple computation.
Sample Session
This is a comment
2 # print a number

[1] 2
2+3 # perform a simple calculation

[1] 5
log(2) # natural log

[1] 0.6931472

Numeric and string objects.

x = 2 # store an object
x # print this object

(x = 3) # store and print an object

x = "Hello" # store a string object
x

Numeric and string objects.

x = 2 # store an object
x # print this object

[1] 2
(x = 3) # store and print an object

[1] 3
x = "Hello" # store a string object
x

[1] "Hello"

Vectors.

#store a vector
Height =

c(168, 177, 177, 177, 178, 172, 165, 171, 178, 170)
Height[2] # Print the second component

Print the second, the 3rd, the 4th and 5th component
Height[2:5]

(obs = 1:10) # Define a vector as a sequence (1 to 10)

Vectors.

#store a vector
Height =

c(168, 177, 177, 177, 178, 172, 165, 171, 178, 170)
Height[2] # Print the second component

[1] 177
Print the second, the 3rd, the 4th and 5th component
Height[2:5]

[1] 177 177 177 178
(obs = 1:10) # Define a vector as a sequence (1 to 10)

[1] 1 2 3 4 5 6 7 8 9 10

Vectors 2

Weight = c(88, 72, 85, 52, 71, 69, 61, 61, 51, 75)

Performs a simple calculation using vectors
BMI = Weight/((Height/100)^2)
BMI

Vectors 2

Weight = c(88, 72, 85, 52, 71, 69, 61, 61, 51, 75)

Performs a simple calculation using vectors
BMI = Weight/((Height/100)^2)
BMI

[1] 31.17914 22.98190 27.13141 16.59804 22.40879 23.32342 22.40588
[8] 20.86112 16.09645 25.95156

Vectors 3

I We can also describe the vector with length(), mean() and var().
length(Height)

mean(Height) # Compute the sample mean

var(Height)

Vectors 3

I We can also describe the vector with length(), mean() and var().
length(Height)

[1] 10
mean(Height) # Compute the sample mean

[1] 173.3
var(Height)

[1] 22.23333

Matrices.

M = cbind(obs,Height,Weight,BMI) # Create a matrix
typeof(M) # Give the type of the matrix

class(M) # Give the class of an object

is.matrix(M) # Check if M is a matrix

dim(M) # Dimensions of a matrix

Matrices.

M = cbind(obs,Height,Weight,BMI) # Create a matrix
typeof(M) # Give the type of the matrix

[1] "double"
class(M) # Give the class of an object

[1] "matrix"
is.matrix(M) # Check if M is a matrix

[1] TRUE
dim(M) # Dimensions of a matrix

[1] 10 4

Simple plotting

I For “quick and dirty” plots, use plot.
I For more advanced and attractive data visualizations, use ggplot.

plot(Height,Weight,ylab="Weight",xlab="Height")

Simple plotting
plot(Height,Weight,ylab="Weight",xlab="Height")

166 168 170 172 174 176 178

50
60

70
80

Height

W
ei

gh
t

Dataframes (tibbles)

I tibbles are modernized versions of dataframes.
I Technically: Lists of vectors (with names).
I Can have different datatypes in different vectors.

library(tibble) # Load the tidyverse tibble package
mydat = as_tibble(M) # Creates a dataframe
names(mydat) # Give the names of each variable

summary(mydat) # Descriptive Statistics

Dataframes

library(tibble) # Load the tidyverse tibble package
mydat = as_tibble(M) # Creates a tibble
names(mydat) # Give the names of each variable

[1] "obs" "Height" "Weight" "BMI"
summary(mydat) # Descriptive Statistics

obs Height Weight BMI
Min. : 1.00 Min. :165.0 Min. :51.00 Min. :16.10
1st Qu.: 3.25 1st Qu.:170.2 1st Qu.:61.00 1st Qu.:21.25
Median : 5.50 Median :174.5 Median :70.00 Median :22.70
Mean : 5.50 Mean :173.3 Mean :68.50 Mean :22.89
3rd Qu.: 7.75 3rd Qu.:177.0 3rd Qu.:74.25 3rd Qu.:25.29
Max. :10.00 Max. :178.0 Max. :88.00 Max. :31.18

Reading and writing data

I There are many routines for reading and writing files.
I Tidyverse versions are in the readr package.

library(readr) #load the tidyverse readr package
write_csv(mydat, "my_data.csv")
mydat2=read_csv("my_data.csv")
mydat2

Reading and writing data

library(readr) #load the tidyverse readr package
write_csv(mydat, "my_data.csv")
mydat2=read_csv("my_data.csv")

Parsed with column specification:
cols(
obs = col_double(),
Height = col_double(),
Weight = col_double(),
BMI = col_double()
)

Reading and writing data
mydat2

A tibble: 10 x 4
obs Height Weight BMI
<dbl> <dbl> <dbl> <dbl>
1 1 168 88 31.2
2 2 177 72 23.0
3 3 177 85 27.1
4 4 177 52 16.6
5 5 178 71 22.4
6 6 172 69 23.3
7 7 165 61 22.4
8 8 171 61 20.9
9 9 178 51 16.1
10 10 170 75 26.0

Special characters in R

I NA: Not Available (i.e. missing values)
I NaN: Not a Number (e.g. 0/0)
I Inf: Infinity
I -Inf: Minus Infinity. For instance 0 divided by 0 gives a NaN, but 1 divided by 0

gives Inf.
0/0

1/0

Special characters in R

I NA: Not Available (i.e. missing values)
I NaN: Not a Number (e.g. 0/0)
I Inf: Infinity
I -Inf: Minus Infinity. For instance 0 divided by 0 gives a NaN, but 1 divided by 0

gives Inf.
0/0

[1] NaN
1/0

[1] Inf

Working directory

We can define a working directory. Note for Windows users : R uses slash (“/”) in the
directory instead of backslash (“\”).
setwd("~/Desktop") # Sets working directory
getwd() # Returns current working directory

dir() # Lists the content of the working directory

Defining functions

I Whenever you program something more involved, you should use functions.
I R makes it easy to provide default arguments.

example_function = function(a, b=2) {
r=a/b
return(r)

}

example_function(3)

example_function(3,4)

example_function(b=4, a=3)

Defining functions

example_function = function(a, b=2) {
r=a/b
return(r)

}

example_function(3)

[1] 1.5
example_function(3,4)

[1] 0.75
example_function(b=4, a=3)

[1] 0.75

Linear regressions

I R makes it easy to fit linear regressions and other models
I The objects returned contain coefficients, residuals, fitted values, etc.
example_regression = lm(Height ~ Weight + BMI, mydat)

summary(example_regression)

Linear regressions
example_regression = lm(Height ~ Weight + BMI, mydat)
summary(example_regression)

##
Call:
lm(formula = Height ~ Weight + BMI, data = mydat)
##
Residuals:
Min 1Q Median 3Q Max
-1.0168 -0.5849 -0.1534 0.4682 1.4380
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 174.24291 1.68433 103.45 2.08e-12 ***
Weight 1.20911 0.08745 13.83 2.45e-06 ***
BMI -3.65895 0.23993 -15.25 1.26e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.8963 on 7 degrees of freedom
Multiple R-squared: 0.9719, Adjusted R-squared: 0.9639
F-statistic: 121 on 2 and 7 DF, p-value: 3.722e-06

Some further important commands

I Look up the help files for the following commands:
map()
ggplot()

