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Instrumental variables

Recall instrumental variables part |

» Origins of instrumental variables: Systems of linear structural equations
Strong restriction: Constant causal effects.

> Modern perspective: Potential outcomes, allow for heterogeneity of causal effects
» Binary case:
1. Keep IV estimand, reinterpret it in more general setting:
Local Average Treatment Effect (LATE)

2. Keep object of interest average treatment effect (ATE):
Partial identification (Bounds)
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Instrumental variables

Agenda instrumental variables part Il

» Continuous treatment case:
1. Restricting heterogeneity in the structural equation:
Nonparametric IV (conditional moment equalities)
2. Restricting heterogeneity in the first stage:
Control functions
3. Linear IV:
Continuous version of LATE
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Instrumental variables

Takeaways for this part of class

> We can write linear IV in three numerically equivalent ways:
1. As ratio Cov(Z,Y)/ Cov(Z, X). R
2. As regression of Y on first stage predicted values X.
3. As regression of Y on X controlling for the first stage residual V.
» The literature on IV identification with continuous treatment generalizes these ideas to
non-linear settings.
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Instrumental variables

Takeaways continued

1. Moment restrictions:
» Assume one-dimensional additive heterogeneity in structural equation of interest
» = nonparametric regression of Y on non-parametric prediction X.

2. Control functions:

» Assume one-dimensional heterogeneity in first stage relationship.
» = Xis independent of structural heterogeneity conditional on V = Fx|(X|Z).

3. Continuous LATE:

» No restrictions on heterogeneity.
> Interpret linear IV coefficient as weighted average derivative.
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Instrumental variables

Alternative ways of writing the linear IV estimand
» Linear triangular system:
Y=PBo+BiX+U
X=p+nZ+V
» Exogeneity (randomization) conditions:
Cov(Z,U) =0, Cov(Z,V)=0.

» Relevance condition:
Cov(Z,X) =1 Var(Z) #0.

» Under these conditions,
By — Cov(Z,Y)
' Cov(Z,X)
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Instrumental variables

Moment conditions

» Write Cov(Z,U) =0 as
COV(Z, Y—Bo—ﬁ1X) =0

> Let X be the predicted value from a first stage regression,
X=p+nZ
» Multiply Cov(Z,U) by 1,
Cov(X,Y — Bo—Bi1X) =0,
and note Cov(X, X) = Var(X), to get
Cov(X, Y)
ﬁ1 = =
Var(X)

> = two-stage least squares!
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Conditional moment equalities

» Under the stronger mean independence restriction E[U|Z] = 0,

0=E[(Y—Bo—BiX)\Z = 2]
— E[Y|Z = 2]~ Bo— BiEIXIZ = 2]

for all z.
» “Conditional moment equality”
» Suggest 2 stage estimator:

1. Regress both Y and X (non-parametrically or linearly) on Z.
2. Then regress E[Y|Z = z] or Y (linearly) on E[X|Z = Z].

> = two-stage least squares!
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Instrumental variables

Control function perspective
» V is the residual of a first stage regression of X on Z.
» Consider a regression of Y on X and V,
Y=8+6X+&V+W

» Partial regression formula:
> &, is the coefficient of a regression of Y on X (or of Y on X),
» where Y, X are the residuals of regressions on V.

» By construction:
X=p+nzZ=X
Y=PBo+BiX+U

» Cov(Z,U) = Cov(Z, V) = 0 implies Cov(X, U) = 0, and thus

8 = Pr.
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Instrumental variables

Recap

» Three numerically equivalent estimands:

1. The slope
Cov(Z,Y)/Cov(Z,X).

2. The two-stage least squares slope from the regression
Y=PBo+BiX+U,

where U = (B;V + U), and X is the first stage predicted value X = %+ % Z.
3. The slope of the regression with control

Y=8+60X+&BV+W,

where the control function V is given by the first stage residual, V =X —% — 1 Z.
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Roadmap

» Nonparametric IV estimators generalize these approaches in different ways, dropping
the linearity assumptions:

1. If heterogeneity in the structural equation is one-dimensional:
conditional moment equalities

2. If heterogeneity in the first stage is one-dimensional:
control functions

3. Without heterogeneity restrictions:
continuous versions of the LATE result for the linear IV estimand

» Objects of interest:

> Average structural function (ASF) g(x) = E[g(x, U)].
» Quantile structural function (QSF) g-(x) defined by P(g(x, U) < g:(x)) = 7.
> Weighted averages of marginal causal effect, [ E[@y - g'(x, U)]dx for weights .
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L Moment restrictions

Approach I:
Conditional moment restrictions (nonparametric V)
» Consider the following generalization of the linear model:

Y=9g(X)+U
X=h(Z,V)
Z1(U,V)

» Here the ASF g equals g.

Practice problem

» Under these assumptions, write out the conditional expectation E[Y|Z = z] as an
integral with respect to dP(X|Z = z).
» Consider the special case where both X and Z have finite support of size ny and n,,
and rewrite the integral as a matrix multiplication. 12/35
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L Moment restrictions

Solution

» Using additivity of structural equation, and independence,
K(2) = E[Y|Z = 2] = E[g(X)|Z = 2] + E[U|Z = 2]
= E[g(X)|Z = Z]
= /g(x)dP(X =x|Z = z).

» In the finite support case, let

> k= (k(z1),...,k(zn,)), 9 = (9(x1), -, 9(xn,)),
> and let P be the n, x ny matrix with entries P(X = x|Z = z).

» Then the integral equation can be written as

k=P-g.
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L Moment restrictions

Completeness

> The function k(z) = E[Y|Z = z] and the conditional distribution Py, are identified.

» In the finite-support case, the equation k = P - g implies that g is identified if the matrix
P has full column rank ny.

» The analogue of the full rank condition for the continuous case (integral equation) is
called “completeness.”

» Completeness requires that variation in Z induces enough variation in X, like the
“instrument relevance” condition in the linear case.

> Completeness is a feature of the observable distribution Pz, in contrast to the
conditions of exogeneity / exclusion, or restrictions on heterogeneity.

14/35



Instrumental variables

L Moment restrictions

lll posed inverse problem

> Even if completeness holds, estimation in the continuous case is complicated by the “ill
posed inverse” problem.

» Consider the discrete case. The vector g is identified from
g=(PP)"Pk

» Suppose that P’ P has eigenvalues close to zero. Then g is very sensitive to minor
changes in P'k.
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L Moment restrictions

» Continuous analog: notation
k(z) = E[Y|Z = 2]1z(2)
(Pa)(2) = [ 9(x)txz(x.2)ox
(P'K)(x) = / K(2)fx.2(x, 2)dz
T=PoP

» Thus the moment conditions can be rewritten as
k=PgorPk=Tg,
» Therefore
g=T"Pk,

if the inverse of T exists — which is equivalent to completeness.

16/35



Instrumental variables

L Moment restrictions

v

vvyyypy

T is a linear, self-adjoint (= symmetric) positive definite operator on L2.

Functional analysis:
If [ [ fx.z(x,z)?fxdz < oo, then 0 is the unique accumulation point of the eigenvalues
of T,

and the eigenvectors form an orthonormal basis of L.
Implication: g is not a continuous function of P'kin L.

Minor estimation errors for k can translate into arbitrarily large estimation errors for g.

Takeaway: Estimation needs to use regularization, convergence rates are slow.
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L Moment restrictions

Estimation using series

v

Implementation is surprisingly simple.
> Use series approximation g(x) ~ Y/~ B;@;(x).
» Then we get

Elgy(2) Y]~ Zﬁ;ElfP; (2)¢;(X)]

» and thus
B =~ (El¢y(2)9;(X)D);; (Elgy (2) Y]);-
» Sample analog: Two stage least squares, where the regressors ¢;(X) are
instrumented by the instruments ¢j/(Z).
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L Moment restrictions

Additive one-dimensional hetereogeneity is crucial for conditional moment

equality
» Consider the following non-additive example:
Y=X2.U
X=Z+V

(U, V)~ N (0’ (01.5 0i5)>

» Average structural function:
g(x) = E[x*-U] =0.

» Conditional moment equality is solved by g(x) = x:
E[Y-3(X)|Z=2]=E[(Z+ V)’U|Z=2]-z
= 2zE[VU] + E[V2U] -z =0.
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L Moment restrictions

Non-additive heterogeneity
» Consider now the slightly more general model

Y:g(X7U)
X=h(Z,V)
Z1(U,V)

» where dim(U) = 1 and g is strictly monotonic in U.
» We can assume w.l.o.g. U ~ Uniform([0,1]).
» Here the QSF g:(x) equals g(x, 7).

Practice problem

» Under these assumptions, show that the conditional probability P(Y < g(X,1)|Z = z)
equals 7.

> Propose an estimator for g(-, 7). .
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L Moment restrictions

Solution
» Conditional probability:

P(Y <g(X,7)|Z=2) = P(g(X,U) < g(X,7)|Z = 2)
=P(U<1|Z=2)
=P(U<T)=7

» This implies
9(-,7) € ar%[n)in E[(E[1(Y < g(X))|1Z] —7)?].
» This suggests a series minimum distance estimator:
g(-)= argmin Z(E[1(Y§g(X))|Z:Z,-]—T>2,
g:9()=LBig(x) i

with £ given in turn by series regression.

21/35



Instrumental variables

L Moment restrictions

One-dimensional hetereogeneity is crucial for conditional quantile restriction

» Consider the following example where heterogeneity U is multidimensional:

Y=UX+ U
X=Z24+V
(Uy,Us,V) ~ N(0,X)

» Without proof: In this case, for generic ¥,
P(Y < g:(X)[Z=2) %7,

where g; is the quantile structural function.

22/35



Instrumental variables

I—Control functions

Approach Il: Control functions

» Consider now the alternative model

Y = g(X,U)
X=h(z,V)
Z1(U,V)

» where dim(V) =1 and h s strictly monotonic in V.

» We can assume w.l.o.g. V ~ Uniform([0,1]).
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|—Control functions

Practice problem

» Write V as a function of X and Z.
> Show that

X 1L U|v.
» Derive an expression for E[Y|X, V].

> Write the average structural function (ASF) E[g(x, U)] in terms of observable
distributions.

» Propose an estimator for the ASF.
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LControI functions

Solution
> V as a function of X and Z: Let x = h(z,v). Then

Fxiz(x|z) = P(h(Z,V) < x|Z = 2)
= P(h(z,V) < h(z,v))
=P(V<v)=y,

and thus V = Fyz(X|2).
» Conditional independence: Write X L U|V as

h(Z,V) LUV =v,
which follows immediately from Z L (U, V).
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LControI functions

Solution continued

» Conditional expectation:

E[Y|X=x,V=v]=E[g(x,U)|X =x,V =V]
~ Elg(x.U)|V =]

» Since V ~ Uniform([0, 1]) by assumption, the law of iterated expectations gives

E[g(x,U)] = E[E[g(x,U)|V]] = /01 E[Y|X=x,V=v]dv.
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LControI functions

Possible estimator

> Estimate Fxz using kernel regression:

Fuz(xl2) = LK(Z 210X <)/ L K(Zi-

for some kernel function K.
> Impute V;:
Vi = Fx|z(Xi|Z).

> Flexibly regress Y; on X; and V,

P Integrate predicted values for x, v over uniform distribution for v.
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LControI functions

One-dimensional hetereogeneity in the first stage is crucial for control
function

» Consider the following example where heterogeneity V is multidimensional:
Y=X+U

X=WVZ+ VWV,

(U, Vi, Vo) ~ N(u,X)
» Average structural function:

g(x) = E[x+ U] = x.
> Control function V = Fy|z(X|Z).
» Conditional independence U L X|V is violated, since U L Z|V does not hold:

YTvutZrv,u

\/ZV2 vw+2Z% v, v, + 22 PRVRV

E[U]Z,V] = py+ o7 (V)
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LContinuous LATE

Approach Ill: Continuous LATE

» Consider the model without restrictions on heterogeneity:

Y =g(X,U)
X=h(Z,V)
Z1(U,v)
> Assume first that X € R, Z € {0,1}.
» Potential outcome notation:
X2 =h(z,V).

» Assume X° < X' (for non-negative weights).
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LContinuous LATE

LATE for binary instrument
P Linear |V slope: As in part | of class,
B Cov(Z,Y) E[Y|Z=1]-E[Y|Z=0]
" Cov(Z,X) E[X|Z=1]-E[X|Z=0]

» Denominator:
E[X|Z=1]-E[X|Z=0] = E[X" - X°].

» Numerator:

E[Y|Z =1]-E[Y|Z=0] = E[g(X", U) — g(X°,U)]

=E {/:1 g (x, U)dx]

X

- /_w Elg'(x, UN1(X° < x < X")]ox
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I—Continuous LATE

» Taking rations yields:
= | Eld(x.U)-alox
where
. 1(X0<x < Xx")
O [TUE[I(XO < x < XY)ax

» = Linear IV gives a weighted average of the slopes (marginal causal effects) ¢g'(x, U).

31/35



Instrumental variables

LContinuous LATE

General instrument
» Now drop restriction that Z € {0,1}, but assume that X > 0.

» Then
Y =g(h(Z,V),U)
=g(0,U) + /om g (x,U)1(x < h(Z,V))dx.
» Thus
Cov(Z,Y) = E [(z— E[Z])- /0 " g (6, UN(x < h(Z, V))dx
— /0 " Eld(x, U) - @]ax
where

B(x) = E[1(x < h(Z, V))-(Z - E[Z])|V].
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LContinuous LATE

» If hisincreasingin Z, then @ > 0.
» Taking ratios as before yields

B= % = /(:o E[d'(x,U) - w]dx

where
_o(x)
 Jo El@(x)]ax’

> As before, linear IV is a weighted average of marginal causal effects ¢g’(x, U).

()
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