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Instrumental variables

Recall instrumental variables part I

I Origins of instrumental variables: Systems of linear structural equations
Strong restriction: Constant causal effects.

I Modern perspective: Potential outcomes, allow for heterogeneity of causal effects
I Binary case:

1. Keep IV estimand, reinterpret it in more general setting:
Local Average Treatment Effect (LATE)

2. Keep object of interest average treatment effect (ATE):
Partial identification (Bounds)
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Agenda instrumental variables part II

I Continuous treatment case:
1. Restricting heterogeneity in the structural equation:

Nonparametric IV (conditional moment equalities)
2. Restricting heterogeneity in the first stage:

Control functions
3. Linear IV:

Continuous version of LATE
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Instrumental variables

Takeaways for this part of class

I We can write linear IV in three numerically equivalent ways:
1. As ratio Cov(Z ,Y )/Cov(Z ,X).
2. As regression of Y on first stage predicted values X̂ .
3. As regression of Y on X controlling for the first stage residual V .

I The literature on IV identification with continuous treatment generalizes these ideas to
non-linear settings.
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Takeaways continued

1. Moment restrictions:
I Assume one-dimensional additive heterogeneity in structural equation of interest
I ⇒ nonparametric regression of Y on non-parametric prediction X̂ .

2. Control functions:
I Assume one-dimensional heterogeneity in first stage relationship.
I ⇒ X is independent of structural heterogeneity conditional on V = FX |Z (X |Z ).

3. Continuous LATE:
I No restrictions on heterogeneity.
I Interpret linear IV coefficient as weighted average derivative.
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Alternative ways of writing the linear IV estimand
I Linear triangular system:

Y = β0 + β1X + U

X = γ0 + γ1Z + V

I Exogeneity (randomization) conditions:

Cov(Z ,U) = 0, Cov(Z ,V ) = 0.

I Relevance condition:
Cov(Z ,X) = γ1 Var(Z ) 6= 0.

I Under these conditions,

β1 =
Cov(Z ,Y )

Cov(Z ,X)
.
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Moment conditions
I Write Cov(Z ,U) = 0 as

Cov(Z ,Y −β0−β1X) = 0

I Let X̂ be the predicted value from a first stage regression,

X̂ = γ0 + γ1Z .

I Multiply Cov(Z ,U) by γ1,

Cov(X̂ ,Y −β0−β1X) = 0,

and note Cov(X̂ ,X) = Var(X̂), to get

β1 =
Cov(X̂ ,Y )

Var(X̂)
.

I ⇒ two-stage least squares!
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Conditional moment equalities

I Under the stronger mean independence restriction E[U|Z ]≡ 0,

0 = E[(Y −β0−β1X)|Z = z]

= E[Y |Z = z]−β0−β1E[X |Z = z]

for all z.

I “Conditional moment equality”
I Suggest 2 stage estimator:

1. Regress both Y and X (non-parametrically or linearly) on Z .
2. Then regress E[Y |Z = z] or Y (linearly) on E[X |Z = z].

I ⇒ two-stage least squares!
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Control function perspective
I V is the residual of a first stage regression of X on Z .
I Consider a regression of Y on X and V ,

Y = δ0 + δ1X + δ2V + W

I Partial regression formula:
I δ1 is the coefficient of a regression of Ỹ on X̃ (or of Y on X̃),
I where Ỹ , X̃ are the residuals of regressions on V .

I By construction:

X̃ = γ0 + γ1Z = X̂

Ỹ = β0 + β1X̃ + Ũ

I Cov(Z ,U) = Cov(Z ,V ) = 0 implies Cov(X̃ , Ũ) = 0, and thus

δ1 = β1.
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Recap

I Three numerically equivalent estimands:
1. The slope

Cov(Z ,Y )/Cov(Z ,X).

2. The two-stage least squares slope from the regression

Y = β0 + β1X̂ + Ũ,

where Ũ = (β1V + U), and X̂ is the first stage predicted value X̂ = γ0 + γ1Z .
3. The slope of the regression with control

Y = δ0 + δ1X + δ2V + W ,

where the control function V is given by the first stage residual, V = X − γ0− γ1Z .
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Instrumental variables

Roadmap

I Nonparametric IV estimators generalize these approaches in different ways, dropping
the linearity assumptions:

1. If heterogeneity in the structural equation is one-dimensional:
conditional moment equalities

2. If heterogeneity in the first stage is one-dimensional:
control functions

3. Without heterogeneity restrictions:
continuous versions of the LATE result for the linear IV estimand

I Objects of interest:
I Average structural function (ASF) ḡ(x) = E[g(x ,U)].
I Quantile structural function (QSF) gτ (x) defined by P(g(x ,U) < gτ (x)) = τ .
I Weighted averages of marginal causal effect,

∫
E[ωx ·g′(x ,U)]dx for weights ωx .
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Moment restrictions

Approach I:
Conditional moment restrictions (nonparametric IV)

I Consider the following generalization of the linear model:

Y = g(X) + U

X = h(Z ,V )

Z ⊥ (U,V )

I Here the ASF ḡ equals g.

Practice problem

I Under these assumptions, write out the conditional expectation E[Y |Z = z] as an
integral with respect to dP(X |Z = z).

I Consider the special case where both X and Z have finite support of size nx and nz ,
and rewrite the integral as a matrix multiplication. 12 / 35
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Moment restrictions

Solution
I Using additivity of structural equation, and independence,

k(z) = E[Y |Z = z] = E[g(X)|Z = z] + E[U|Z = z]

= E[g(X)|Z = z]

=
∫

g(x)dP(X = x |Z = z).

I In the finite support case, let
I k = (k(z1), . . . ,k(znz )), g = (g(x1), . . . ,g(xnx )),
I and let P be the nz ×nx matrix with entries P(X = x |Z = z).

I Then the integral equation can be written as

k = P ·g.
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Moment restrictions

Completeness

I The function k(z) = E[Y |Z = z] and the conditional distribution PX |Z are identified.

I In the finite-support case, the equation k = P ·g implies that g is identified if the matrix
P has full column rank nx .

I The analogue of the full rank condition for the continuous case (integral equation) is
called “completeness.”

I Completeness requires that variation in Z induces enough variation in X , like the
“instrument relevance” condition in the linear case.

I Completeness is a feature of the observable distribution PX |Z , in contrast to the
conditions of exogeneity / exclusion, or restrictions on heterogeneity.
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Moment restrictions

Ill posed inverse problem

I Even if completeness holds, estimation in the continuous case is complicated by the “ill
posed inverse” problem.

I Consider the discrete case. The vector g is identified from

g = (P ′P)−1P ′k

I Suppose that P ′P has eigenvalues close to zero. Then g is very sensitive to minor
changes in P ′k .
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Moment restrictions

I Continuous analog: notation

k̃(z) = E[Y |Z = z]fZ (z)

(Pg)(z) =
∫

g(x)fX ,Z (x ,z)dx

(P ′k)(x) =
∫

k(z)fX ,Z (x ,z)dz

T = P ′ ◦P

I Thus the moment conditions can be rewritten as
k̃ = Pg or P ′k̃ = T g,

I Therefore
g = T−1P ′k̃ ,

if the inverse of T exists – which is equivalent to completeness.
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Moment restrictions

I T is a linear, self-adjoint (≈ symmetric) positive definite operator on L2.

I Functional analysis:
If
∫ ∫

fX ,Z (x ,z)2fxdz ≤ ∞, then 0 is the unique accumulation point of the eigenvalues
of T ,

I and the eigenvectors form an orthonormal basis of L2.

I Implication: g is not a continuous function of P ′k̃ in L2.

I Minor estimation errors for k̃ can translate into arbitrarily large estimation errors for g.

I Takeaway: Estimation needs to use regularization, convergence rates are slow.
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Moment restrictions

Estimation using series

I Implementation is surprisingly simple.

I Use series approximation g(x)≈ ∑
k
j=1 βjφj(x).

I Then we get

E[φj ′(Z )Y ]≈
k

∑
j=1

βjE[φj ′(Z )φj(X)]

I and thus
β ≈ (E[φj ′(Z )φj(X)])−1

j,j ′ (E[φj ′(Z )Y ])j ′ .

I Sample analog: Two stage least squares, where the regressors φj(X) are
instrumented by the instruments φj ′(Z ).
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Moment restrictions

Additive one-dimensional hetereogeneity is crucial for conditional moment
equality

I Consider the following non-additive example:

Y = X 2 ·U
X = Z + V

(U,V )∼ N

(
0,

(
1 0.5

0.5 1

))
I Average structural function:

ḡ(x) = E[x2 ·U] = 0.

I Conditional moment equality is solved by g̃(x) = x :

E[Y − g̃(X)|Z = z] = E[(Z + V )2U|Z = z]− z

= 2zE[VU] + E[V 2U]− z = 0.
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Moment restrictions

Non-additive heterogeneity
I Consider now the slightly more general model

Y = g(X ,U)

X = h(Z ,V )

Z ⊥ (U,V )

I where dim(U) = 1 and g is strictly monotonic in U.
I We can assume w.l.o.g. U ∼ Uniform([0,1]).
I Here the QSF gτ (x) equals g(x ,τ).

Practice problem

I Under these assumptions, show that the conditional probability P(Y ≤ g(X ,τ)|Z = z)
equals τ .

I Propose an estimator for g(·,τ).
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Moment restrictions

Solution
I Conditional probability:

P(Y ≤ g(X ,τ)|Z = z) = P(g(X ,U)≤ g(X ,τ)|Z = z)

= P(U ≤ τ|Z = z)

= P(U ≤ τ) = τ

I This implies
g(·,τ) ∈ argmin

g(·)
E
[
(E[1(Y ≤ g(X))|Z ]− τ)2] .

I This suggests a series minimum distance estimator:

ĝ(·) = argmin
g:g(x)=∑βj φj(x)

∑
i

(
Ê[1(Y ≤ g(X))|Z = Zi ]− τ

)2
,

with Ê given in turn by series regression.
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Moment restrictions

One-dimensional hetereogeneity is crucial for conditional quantile restriction

I Consider the following example where heterogeneity U is multidimensional:

Y = U1X + U2

X = Z + V

(U1,U2,V )∼ N(0,Σ)

I Without proof: In this case, for generic Σ,

P(Y ≤ gτ (X)|Z = z) 6= τ,

where gτ is the quantile structural function.
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Control functions

Approach II: Control functions

I Consider now the alternative model

Y = g(X ,U)

X = h(Z ,V )

Z ⊥ (U,V )

I where dim(V ) = 1 and h is strictly monotonic in V .

I We can assume w.l.o.g. V ∼ Uniform([0,1]).
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Control functions

Practice problem

I Write V as a function of X and Z .

I Show that
X ⊥ U|V .

I Derive an expression for E[Y |X ,V ].

I Write the average structural function (ASF) E[g(x ,U)] in terms of observable
distributions.

I Propose an estimator for the ASF.
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Control functions

Solution

I V as a function of X and Z : Let x = h(z,v). Then

FX |Z (x |z) = P(h(Z ,V )≤ x |Z = z)

= P(h(z,V )≤ h(z,v))

= P(V ≤ v) = v ,

and thus V = FX |Z (X |Z ).

I Conditional independence: Write X ⊥ U|V as

h(Z ,V )⊥ U|V = v ,

which follows immediately from Z ⊥ (U,V ).
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Control functions

Solution continued

I Conditional expectation:

E[Y |X = x ,V = v ] = E[g(x ,U)|X = x ,V = v ]

= E[g(x ,U)|V = v ]

I Since V ∼ Uniform([0,1]) by assumption, the law of iterated expectations gives

E[g(x ,U)] = E[E[g(x ,U)|V ]] =
∫ 1

0
E[Y |X = x ,V = v ]dv .
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Control functions

Possible estimator

I Estimate FX |Z using kernel regression:

F̂X |Z (x |z) = ∑
i

K (Zi − z)1(Xi ≤ x)
/
∑

i
K (Zi − z)

for some kernel function K .

I Impute Vi :
V̂i = F̂X |Z (Xi |Zi).

I Flexibly regress Yi on Xi and V̂i .

I Integrate predicted values for x ,v over uniform distribution for v .
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Control functions

One-dimensional hetereogeneity in the first stage is crucial for control
function

I Consider the following example where heterogeneity V is multidimensional:
Y = X + U

X = V1Z + V2

(U,V1,V2)∼ N(µ,Σ)

I Average structural function:
g(x) = E[x + U] = x .

I Control function Ṽ = FX |Z (X |Z ).
I Conditional independence U ⊥ X |Ṽ is violated, since U ⊥ Z |Ṽ does not hold:

E[U|Z , Ṽ ] = µU + Φ−1(Ṽ )
ΣV2,U + ZΣVq ,U√

ΣV2,V2 + 2ZΣV1,V2 + Z 2ΣV1,V1
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Continuous LATE

Approach III: Continuous LATE

I Consider the model without restrictions on heterogeneity:

Y = g(X ,U)

X = h(Z ,V )

Z ⊥ (U,V )

I Assume first that X ∈ R, Z ∈ {0,1}.
I Potential outcome notation:

X z = h(z,V ).

I Assume X 0 ≤ X 1 (for non-negative weights).
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Continuous LATE

LATE for binary instrument
I Linear IV slope: As in part I of class,

β :=
Cov(Z ,Y )

Cov(Z ,X)
=

E[Y |Z = 1]−E[Y |Z = 0]

E[X |Z = 1]−E[X |Z = 0]
.

I Denominator:
E[X |Z = 1]−E[X |Z = 0] = E[X 1−X 0].

I Numerator:

E[Y |Z = 1]−E[Y |Z = 0] = E[g(X 1,U)−g(X 0,U)]

= E

[∫ X 1

X 0
g′(x ,U)dx

]
=
∫

∞

−∞

E[g′(x ,U)1(X 0 ≤ x ≤ X 1)]dx
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Continuous LATE

I Taking rations yields:

β =
∫

∞

−∞

E[g′(x ,U) ·ω]dx

where

ω =
1(X 0 ≤ x ≤ X 1)∫

∞

−∞
E[1(X 0 ≤ x ≤ X 1)dx

.

I ⇒ Linear IV gives a weighted average of the slopes (marginal causal effects) g′(x ,U).
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Continuous LATE

General instrument
I Now drop restriction that Z ∈ {0,1}, but assume that X ≥ 0.
I Then

Y = g(h(Z ,V ),U)

= g(0,U) +
∫

∞

0
g′(x ,U)1(x ≤ h(Z ,V ))dx .

I Thus

Cov(Z ,Y ) = E

[
(Z −E[Z ]) ·

∫
∞

0
g′(x ,U)1(x ≤ h(Z ,V ))dx

]
=
∫

∞

0
E[g′(x ,U) ·ϖ ]dx

where
ϖ(x) = E[1(x ≤ h(Z ,V )) · (Z −E[Z ])|V ].
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Continuous LATE

I If h is increasing in Z , then ϖ ≥ 0.

I Taking ratios as before yields

β =
Cov(Z ,Y )

Cov(Z ,X)
=
∫

∞

0
E[g′(x ,U) ·ω]dx

where

ω =
ϖ(x)∫

∞

0 E[ϖ(x)]dx
.

I As before, linear IV is a weighted average of marginal causal effects g′(x ,U).
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