
Harvard University, fall 2017, Syllabus for:

Economics 2148 - Topics in Econometrics

Part I: Advances in causality and
foundations of machine learning

instructors Maximilian Kasy
Elie Tamer

office Littauer 121
office hours after class
email teachingmaxkasy@gmail.com
class time Tue & Thur, 1:30pm-3pm
location Emerson 210
webpage https://canvas.harvard.edu/courses/32818

Overview and Objectives

Economics 2148, one of the second-year econometrics field classes, will be
co-taught by Elie Tamer and me. This is is the Syllabus for the first half of
the course.

We will begin the class with a survey of the literature on identifica-
tion using instrumental variables, taking the linear model as a point
of departure. The linear model imposes strong restrictions on the hetero-
geneity of causal effects. Generalizing this model to allow for nonlinear and
heterogeneous effects leads to a variety of approaches discussed in the litera-
ture, including a re-interpretation of classic estimands as LATE, bounds on
objects such as the ATE that are not point identified, conditional moment
restrictions, and control function approaches.

The next part of class will cover some of the theoretical foundations
of machine learning, including regularization and data-driven choice of
tuning parameters. We will discuss in some detail the canonical normal
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means model. In this model, we will motivate shrinkage estimators in dif-
ferent ways, and will prove the famous result that shrinkage estimators can
uniformly dominate conventional estimators. We will then move from nor-
mal means to function estimation using Gaussian process priors. We will
show the equivalence of (empirical) Bayes estimation using such priors to
penalized least squares regression with penalties corresponding to so-called
reproducing kernel Hilbert space norms. The first half of 2148 concludes
with some applications of Gaussian process priors to experimental design
and to optimal taxation.

For both instrumental variables and shrinkage will briefly review some
of the foundations that were covered in Economics 2110 last year.

Requirements and policies

Your grade for Economics 2148 will be determined by both the first and
second half of the class with equal weights. For the first half of the class,
you are asked to complete two computer-based problem sets, and to submit
summaries of two papers of your choice from the references at the end of
this Syllabus. I am happy to make recommendations if you are not sure
which ones to pick. Please upload both your problem set solutions and
your summaries via Canvas. These assignments contribute to your grade as
follows.

1. Two summaries of about 3 pages length each (7% of grade each).

2. Two problem set solutions (7% of grade each).

3. In-class midterm exam on October 12 (22% of grade).

Additionally, the slides contain a lot of “practice problems,” which
you will have to solve in class. The idea is to have you complete most of the
proofs, after I pointed you in the right direction. After a few minutes, we
will discuss the solutions to these problems. These problems provide good
guidance for what you might expect from the midterm exam.

To help me improve the course, I will ask you to give me anonymous
feedback at some point, writing what you like about the class and what you
think I should change.
I encourage you to come to office hours with any questions. If you need any
special accommodations for physical or medical reasons, please see me after
class or send me an email.
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Outline of the course

Instrumental variables part I – origins and binary treatment

• Origins of instrumental variables: Systems of linear structural equa-
tions

• Strong restriction: Constant causal effects.

• Modern perspective: Potential outcomes, allow for heterogeneity of
causal effects

• Keep IV estimand, reinterpret it in more general setting:
Local Average Treatment Effect (LATE)

• Keep object of interest: Average Treatment Effect (ATE)
Partial identification (Bounds)

Instrumental variables part II – continuous treatment

• Restricting heterogeneity in the structural equation:
Nonparametric IV (conditional moment equalities)

• Restricting heterogeneity in the first stage:
Control functions

• Linear IV:
Continuous version of LATE

Review of decision theory

• Basic definitions

• Optimality criteria

• Relationships between optimality criteria

• Analogies to microeconomics

• Two justifications of the Bayesian approach
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Shrinkage in the normal means model

• Setup: the normal means model X ∼ N(θ, Ik) and the canonical
estimation problem with loss ‖θ̂ − θ‖2.

• The James-Stein (JS) shrinkage estimator.

• Three ways to arrive at the JS estimator (almost):

1. Reverse regression of θi on Xi.

2. Empirical Bayes: random effects model for θi.

3. Shrinkage factor minimizing Stein’s Unbiased Risk Estimate.

• Proof that JS uniformly dominates X as estimator of θ.

• The normal means model as asymptotic approximation.

Gaussian process priors, reproducing kernel Hilbert spaces, and
Splines

• 6 equivalent representations of the posterior mean in the normal-
normal model.

• Gaussian process priors for regression functions.

• Reproducing Kernel Hilbert Spaces and splines.

Applications of Gaussian process priors from my own work

• Optimal treatment assignment in experiments.

– Setting: Treatment assignment given baseline covariates

– General decision theory result:
Non-random rules dominate random rules

– Prior for expectation of potential outcomes given covariates

– Expression for MSE of estimator for ATE
to minimize by treatment assignment

• Optimal insurance and taxation.

– Review: Envelope theorem.

– Economic setting: Co-insurance rate for health insurance

– Statistical setting: prior for behavioral average response function

– Expression for posterior expected social welfare
to maximize by choice of co-insurance rate
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