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Outline

• Synthetic controls and comparative case studies.

• Construction of synthetic controls.

• Factor model and bias bounds.

• Permutation inference.

• Applications.

• Requirements for validity.
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Takeaways for this part of class

• Synthetic controls are a convex combination of similar units.

• They match pre-treatment outcomes and covariates.

• Factor models can rationalize synthetic controls.

• Permutation inference provides an analog to randomization inference for
experiments.
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Introduction

• Synthetic control methods were originally proposed in Abadie and Gardeazabal
(2003) and Abadie et al. (2010) with the aim to estimate the effects of
aggregate interventions.

• Many events or interventions of interest naturally happen at an aggregate level
affecting a small number of large units (such as cities, regions, or countries).

• Even in experimental settings micro-interventions may not be feasible (e.g.,
fairness) or effective (e.g., interference).
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Introduction

• When the units of analysis are a few aggregate entities, a combination of
comparison units (a “synthetic control”) often does a better job reproducing the
characteristics of a treated unit than any single comparison unit alone.

• The comparison unit in the synthetic control method is selected as the
weighted average of all potential comparison units that best resembles the
characteristics of the treated unit(s).
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Setup
• Suppose that we observe J+ 1 units in periods 1,2, . . . ,T.

• Unit “one” is exposed to the intervention of interest (that is, “treated”) during
periods T0+ 1, . . . ,T.

• The remaining J are an untreated reservoir of potential controls (a “donor pool”).

• Let YN
it be the outcome that would be observed for unit i at time t in the

absence of the intervention.

• Let Y I
it be the outcome that would be observed for unit i at time t if unit i is

exposed to the intervention in periods T0+ 1 to T.

• We aim to estimate the effect of the intervention on the treated unit,

τ1t = Y I
1t−YN

1t = Y1t−YN
1t

for t> T0, and Y1t is the outcome for unit one at time t.
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Setup continued
• Let W = (w2, . . . ,wJ+1)

′ with wj ≥ 0 for j= 2, . . . ,J+ 1 and w2+ · · ·+wJ+1 = 1.
Each value of W represents a potential synthetic control.

• Let X1 be a (k× 1) vector of pre-intervention characteristics for the treated unit.
Similarly, let X0 be a (k×J) matrix which contains the same variables for the
unaffected units.

• The vector W∗ = (w∗2, . . . ,w∗J+1)
′ is chosen to minimize ‖X1−X0W‖, subject to

our weight constraints.

• Let Yjt be the value of the outcome for unit j at time t. For a post-intervention
period t (with t≥ T0) the synthetic control estimator is:

τ̂1t = Y1t−
J+1
∑
j=2

w∗j Yjt.
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Weighted squared error

• Typically,

‖X1−X0W‖=
(

k
∑
h=1

vh (Xh1−w2Xh2−·· ·−wJ+1XhJ+1)
2
)1/2

• The positive constants v1, . . . ,vk reflect the predictive power of each of the k
predictors on YN

1t.

• v1, . . . , vk can be chosen via out-of-sample validation.
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Application: German reunification
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Application: German reunification

West Synthetic OECD
Germany West Germany Sample

(1) (2) (3)
GDP per-capita 15808.9 15802.24 13669.4
Trade openness 56.8 56.9 59.8
Inflation rate 2.6 3.5 7.6
Industry share 34.5 34.5 34.0
Schooling 55.5 55.2 38.7
Investment rate 27.0 27.0 25.9

Note: First column reports X1, second column reports X0W∗, and last column reports a
simple average for the 16 OECD countries in the donor pool. GDP per capita, inflation rate,
and trade openness are averages for 1981–1990. Industry share (of value added) is the
average for 1981–1989. Schooling is the average for 1980 and 1985. Investment rate is
averaged over 1980–1984.
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Application: German reunification

country j W∗j country j W∗j
Australia 0 Netherlands 0.10
Austria 0.42 New Zealand 0
Belgium 0 Norway 0
Denmark 0 Portugal 0
France 0 Spain 0
Greece 0 Switzerland 0.11
Italy 0 United Kingdom 0
Japan 0.16 United States 0.22
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Factor model and bias bound

• Abadie et al. (2010) establish a bias bound under the factor model

YN
it = δt+θ tZi+λ tµ i+ εit,

where Zi are observed features, µ i are unobserved features, and εit is a
unit-level transitory shock, modeled as random noise.

• Suppose that we can choose W∗ such that:

J+1
∑
j=2

w∗j Zj = Z1,
J+1
∑
j=2

w∗j Yj1 = Y11, · · · ,
J+1
∑
j=2

w∗j YjT0 = Y1T0 .

In practice, these may hold only approximately.
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Practice problem
Suppose that the factor model holds,
and that the pre-treatment fit of the synthetic control is exact.
Derive an expression for the estimation error for treatment effects.
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Solution

If ∑
T0
t=1 λ

′
tλ t is nonsingular, then

YN
1t−

J+1
∑
j=2

Yjt =

J+1
∑
j=2

w∗j
T0

∑
s=1

λ t

(
T0

∑
n=1

λ
′
nλ n

)−1
λ
′
s(εjs− ε1s)

−
J+1
∑
j=2

w∗j (εjt− ε1t).
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Fit and validity

• The bias bound is predicated on close fit, and controlled by the ratio between
the scale of εit and T0.

• In particular, the credibility of a synthetic control depends on the extent to
which it is able to fit the trajectory of Y1t for an extended pre-intervention period.
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Fit and validity

• There are no ex-ante guarantees on the fit. If the fit is poor, Abadie et al. (2010)
recommend against the use of synthetic controls.

• In particular, settings with small T0, large J, and large noise create substantial
risk of overfitting.

• To reduce interpolation biases and risk of overfitting, restrict the donor pool to
units that are similar to the treated unit.
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Permutation inference

• Abadie et al. (2010) propose a mode of inference for the synthetic control
framework that is based on permutation methods.

• A permutation distribution can be obtained by iteratively reassigning the
treatment to the units in the donor pool and estimating “placebo effects” in
each iteration.

• The effect of the treatment on the unit affected by the intervention is deemed
to be significant when its magnitude is extreme relative to the permutation
distribution.
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Permutation inference
• Permutation inference is complicated by the fact that the pre-intervention fit on

the outcome variable may be of different quality for different sample units.

• This can be addressed by using the ratio between post-treatment and
pre-treatment RMSE as a test statistic. Let

Rj(t1, t2) =
(

1
t2− t1+ 1

t2
∑
t=t1

(Yjt− ŶN
jt )

2
)1/2

,

where ŶN
jt is the outcome on period t produced by a synthetic control when unit

j is coded as treated and using all other J units to construct the donor pool.

• Abadie et al. (2010) use the permutation distribution of

rj =
Rj(T0+ 1,T)
Rj(1,T0)

.
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Application: German reunification
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Application: German reunification

• The permutation distribution is more informative than mechanically looking at
p-values alone.

• Depending on the number of units in the donor pool, conventional significance
levels may be unrealistic or impossible.

• Often, one sided inference is most relevant.
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Application: California tobacco control program

1970 1975 1980 1985 1990 1995 2000

0
20

40
60

80
10

0
12

0
14

0

year

pe
r−

ca
pi

ta
 c

ig
ar

et
te

 s
al

es
 (

in
 p

ac
ks

)

California
rest of the U.S.

Passage of Proposition 99

20 / 41



Application: California tobacco control program

1970 1975 1980 1985 1990 1995 2000

0
20

40
60

80
10

0
12

0
14

0

year

pe
r−

ca
pi

ta
 c

ig
ar

et
te

 s
al

es
 (

in
 p

ac
ks

)

California
synthetic California

Passage of Proposition 99

21 / 41



Application: California tobacco control program
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Application: California tobacco control program
(All States in Donor Pool)
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Application: California tobacco control program
(Pre-Prop. 99 MSPE ≤ 20 Times Pre-Prop. 99 MSPE for CA)
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Application: California tobacco control program
(Pre-Prop. 99 MSPE ≤ 5 Times Pre-Prop. 99 MSPE for CA)
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Application: California tobacco control program
(Pre-Prop. 99 MSPE ≤ 2 Times Pre-Prop. 99 MSPE for CA)
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Application: California tobacco control program
(All 38 States in Donor Pool)
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Permutation inference

• The availability of a well-defined procedure to select the comparison unit
makes the estimation of the effects of placebo interventions feasible.

• The permutation method we just described does not attempt to approximate
the sampling distributions of test statistics.

• Sampling-based inference is complicated in a comparative case study setting,
sometimes because of the absence of a well-defined sampling mechanism
and sometimes because the sample is the same as the population.
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Permutation inference

• This mode of inference reduces to classical randomization inference (Fisher,
1935) when the intervention is randomly assigned, a rather improbable setting.

• More generally, this mode of inference evaluates significance relative to a
benchmark distribution for the assignment process, one that is implemented
directly in the data.
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Why use synthetic controls?
• Compare to linear regression. Let:

• Y0 be the (T−T0)×J matrix of post-intervention outcomes for the units in the
donor pool.

• X1 and X0 be the result of augmenting X1 and X0 with a row of ones.

• B̂= (X0X
′
0)
−1X0Y ′0 collects the coefficients of the regression of Y0 on X0.

• B̂
′
X1 is a regression-based estimator of the counterfactual outcome for the

treated unit without the treatment.

• Notice that B̂
′
X1 = Y0Wreg, with

Wreg = X ′0(X0X
′
0)
−1X1.

• The components of Wreg sum to one, but may be outside [0,1], allowing
extrapolation.
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Application: German reunification

country j Wreg
j country j Wreg

j
Australia 0.12 Netherlands 0.14
Austria 0.26 New Zealand 0.12
Belgium 0.00 Norway 0.04
Denmark 0.08 Portugal -0.08
France 0.04 Spain -0.01
Greece -0.09 Switzerland 0.05
Italy -0.05 United Kingdom 0.06
Japan 0.19 United States 0.13
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Why use synthetic controls?

• No extrapolation. Synthetic control estimators preclude extrapolation outside
the support of the data.

• Transparency of the fit. Linear regression uses extrapolation to guarantee a
perfect fit of the characteristics of the treated unit, X0Wreg = X1, even when the
untreated units are completely dissimilar in their characteristics to the treated
unit. In contrast, synthetic controls make transparent the actual discrepancy
between the treated unit and the convex hull of the units in the donor pool,
X1−X0W∗.

• Safeguard against specification searches. Synthetic controls do not require
access to post-treatment outcomes in the design phase of the study, when
synthetic control weights are calculated. Therefore, all design decisions can be
made without knowing how they affect the conclusions of the study.
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Why use synthetic controls?

• Safeguard against specification searches (cont.) Synthetic control weights
can be calculated and pre-registered before the post-treatment outcomes are
realized, or before the actual intervention takes place, providing a safeguard
against specification searches and p-hacking.

• Transparency of the counterfactual. Synthetic controls make explicit the
contribution of each comparison unit to the counterfactual of interest.

• Sparsity. Because the synthetic control coefficients are proper weights and are
sparse, they allow a precise interpretation of the nature of the estimate of the
counterfactual of interest (and of potential biases).
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Sparsity: Geometric interpretation
Sparsity comes from projecting X1 on the convex hull of X0

Synthetic Control Method: Sparsity

X 0W
∗

X 1
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Why use synthetic controls?

• In some cases, especially in applications with many treated units, the values of
the predictors for some of the treated units may fall in the convex hull of the
columns of X0.

• Then, synthetic controls are not unique or necessarily sparse.

• A modification of the synthetic control estimator that is always unique and
sparse is developed in Abadie and L’Hour (2019).
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Contextual requirements

• Size of the effect and volatility of the outcome. Small effects will be
indistinguishable from other shocks to the outcome of the affected unit,
especially if the outcome variable of interest is highly volatile.

• Availability of a comparison group. Untreated units that

• Do not adopt interventions similar to the one under investigation during the period
of the study.

• Do not suffer large idiosyncratic shocks to the outcome of interest during the
study period.

• Have characteristics similar to the characteristics of the affected unit.

• No anticipation. Can be addressed by backdating.
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Contextual requirements

• No interference. Sparsity makes it possible to address interference issues.

• Convex hull condition. Synthetic control estimates are predicated on the idea
that a combination of unaffected units can approximate the pre-intervention
characteristics of the affected unit.

• Time horizon. The effect of some interventions may take time to emerge or to
be of enough magnitude to be quantitatively detected in the data.
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Data requirements

• Aggregate data on predictors and outcomes. Sometimes, when aggregate
data do not exist aggregates of micro-data are employed in comparative case
studies.

• Sufficient pre-intervention information. The credibility of a synthetic control
estimator depends in great part on its ability to steadily track the trajectory of
the outcome variable for the affected unit before the intervention. (Recall bias
bound.)

• Sufficient post-intervention information. This may be problematic if the effect
of an intervention is expected to arise gradually over time and if no forward
looking measures of the outcome are available.
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Robustness and Diagnosis Checks
• Backdating. Backdating was discussed before as a way to address

anticipation effects on the outcome variable before an intervention occurs. In
the absence of anticipation effects, he same idea can be applied to assess the
credibility of a synthetic control in concrete empirical applications.
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Robustness and Diagnosis Checks
• Robustness tests. With respect to changes in the study design. In the context

of synthetic controls:
• Units in the donor pool
• Predictors of the outcome variable.

1960 1970 1980 1990 2000

0
50

00
15

00
0

25
00

0
35

00
0

Year

P
er

 C
ap

ita
 G

D
P

 (
P

P
P

 2
00

2 
U

S
D

)

West Germany
synthetic West Germany
synthetic West Germany (leave−one−out)

40 / 41



References

Abadie, A. and Gardeazabal, J. (2003). The economic costs of conflict: A case
study of the Basque Country. American Economic Review, 93(1):113–132

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic control meth-
ods for comparative case studies: Estimating the effect of california’s to-
bacco control program. Journal of the American Statistical Association,
105(490):493–505

These slides are based on the slides by Alberto Abadie for previous iterations of
14.385.

41 / 41


	Introduction
	Bias bound and inference
	Applications
	Why use synthetic controls?
	Requirements
	References

