14.385 Nonlinear Econometric Analysis
Reinforcement learning

Maximilian Kasy
Department of Economics, MIT

Fall 2022

Outline
e Markov decision problems: Goal oriented interactions with an environment.
e Expected updates — dynamic programming.

Familiar from economics. Requires complete knowledge of transition
probabilities.

e Sample updates: Transition probabilities are unknown.
® On policy: Sarsa.

e Off policy: Q-learning.

e Approximation: When state and action spaces are complex.
® On policy: Semi-gradient Sarsa.

Off policy: Semi-gradient Q-learning.

Deep reinforcement learning.

Eligibility traces and TD(1).

1/20

Takeaways for this part of class

e Markov decision problems provide a general model of goal-oriented interaction
with an environment.

e Reinforcement learning considers Markov decision problems where transition
probabilities are unknown.

¢ A leading approach is based on estimating action-value functions.

e |f state and action spaces are small, this can be done in tabular form, otherwise
approximation (e.g., using neural nets) is required.

e We will distinguish between on-policy and off-policy learning.

2/20

Introduction
e Many interesting problems can be modeled as Markov decision problems.

e Biggest successes in game play (Backgammon, Chess, Go, Atari games,...),
where lots of data can be generated by self-play.

e Basic framework is familiar from macro / structural micro, where it is solved
using dynamic programming / value function iteration.

e Big difference in reinforcement learning:
Transition probabilities are not known, and need to be learned from data.

e This makes the setting similar to bandit problems, with the addition of
changing states.

e We will discuss several approaches based on estimating action-value
functions.

3/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Markov decision problems

e Time periodst=1,2,...

States St € .7 (This is the part that's new relative to bandits!)

Actions At € 7 (St)

Rewards Ry 1

Dynamics (transition probabilities):

P(Sty1 =5 Riy1=r|St =s,At=a,St_1,Ar1,...) = p(s',r]s,a).

e The distribution depends only on the current state and action.
® |tis constant over time.
* We will allow for continuous states and actions later.

4/20

Policy function, value function, action value function

e Objective: Discounted stream of rewards, ¥t~ ¥'Rt.

e Expected future discounted reward at time t, given the state S; = s:
Value function,

Vi(s)=E | Y. ¥ 'Ry|St=s]| .
t'>t
e Expected future discounted reward at time t, given the state S; = s and action
Ai=a:
Action value function,

Qt(a73) =E [Z '}’t,ith/|St =S5,A;= a] .

>t

5/20

Bellman equation

e Consider a policy m(als), giving the probability of choosing a in state s.
This gives us all transition probabilities, and we can write expected discounted
returns recursively

Qx(a,s) = (#:Qx)(a,s) Zp s',r|s,a) <r+ }/-Zn(a’\s’)on(a’,s’)> :

e Suppose alternatively that future actions are chosen optimally.
We can again write expected discounted returns recursively

0.0.5) = (#.0.)(a.9) = Lp('rls.a) 1+ 7 maxQ.(a')).

s'r

6/20

Existence and uniequeness of solutions

e The operators %, and 4, define contraction mappings on the space of action
value functions. (As longas y < 1)

e By Banach's fixed point theorem, unigue solutions exist.

e The difference between assuming a given policy x, or considering optimal
actions argmax ,Q(a, s), is the dividing line between on policy and off policy
methods in reinforcement learning.

7/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Expected updates - dynamic programming

Suppose we know the transition probabilities p(s’,r|s,a).

Then we can in principle just solve for the action value functions and optimal
policies.

This is typically assumed in macro, |0 models.

Solutions: Dynamic programming.
lteratively replace

® Qx(a,s) by (%:Qx)(a,s), or
* Q.(a,s) by (%.Q.)(a,s).

Decision problems with terminal states: Can solve in one sweep of backward
induction.

Otherwise: Value function iteration until convergence — replace repeatedly.

8/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Sample updates

In practically interesting settings, agents (human or Al) typically don't know the
transition probabilities p(s’,r|s, a).

This is where reinforcement learning comes in.
Learning from observation while acting in an environment.

Observations come in the form of tuples

(s,a,r,s’).

Based on a sequence of such tuples, we want to learn Q, or Q..

9/20

Classification of one-step reinforcement
learning methods

1. Known vs. unknown transition probabilities.
2. Value function vs. action value function.

3. On policy vs. off policy.

e We will discuss Sarsa and Q-learning.

e Both: unknown transition probabilities and
action value functions.

e First: “tabular” methods, where we keep track
off all possible values (a, s).

e Then: “approximate” methods for richer
spaces of (a,s), e.g., deep neural nets.

Value
estimated

vy (s)

V4 (S)

qr (S, (Z)

q«(s,a)

Expected updates
(OP)

s

o

OO0 OO0 OO0

policy evaluation
S

Y.

OO OO OO0

value iteration

i

. L] L] .(I,

g-policy evaluation

’
e o o e

g-value iteration

Sample updates
(one-step TD)

s

I

A
R

o5’
TD(0)

s, a

"
I

o/

Sarsa

RT
o
A
o ‘od

Q-learning

10/20

Sarsa

On policy learning of action value functions.

Recall Bellman equation

Qz(a,s) =) p(s',rls.a) <r+ y-Zn(a’|S’)Q”(a’,s’)> :

Sarsa estimates expectations by sample averages.

After each observation (s,a,r,s’,a’), replace the estimated Q,(a,s) by

Qz(a,8)+a-(r+v-Qq(a',s') —Qx(a,s)).

o is the step size / speed of learning / rate of forgetting.

11/20

Sarsa as stochastic (semi-)gradient descent

e Think of Qx(a,s) as prediction for Y =r+1vy-Q(a’,s’).

e Quadratic prediction error:
(Y —Qx(a,s))?.

¢ Gradient for minimization of prediction error for current observation w.r.t.
Qx(a,s):
—(Y—Qz(a,s)).

e Sarsais thus a variant of stochastic gradient descent.

e Variant: Data are generated by actions where x is chosen as the optimal policy
for the current estimate of Q.

e Reasonable method, but convergence guarantees are tricky.

12/20

Q-learning

Similar to Sarsa, but off policy.

Like Sarsa, estimate expectation over p(s’,r|s,a) by sample averages.

Rather than the observed next action a’ consider the optimal action
argmax 5 Q.(a,s").

After each observation (s,a,r,s’), replace the estimated Q.(a,s) by

Q.(a,s)+a- <r+ Y- max Q.(a',s") - Q*(a,s)> .

13/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Approximation

So far, we have implicitly assumed that there is a small, finite number of states
s and actions a, so that we can store Q(a, s) in tabular form.

In practically interesting cases, this is not feasible.

Instead assume parametric functional form for Q(a,s; 6).

In particular: Deep neural nets!

Assume differentiability with gradient VyQ(a,s; 0).

14/20

Stochastic gradient descent

e Denote our prediction target for an observation (s,a,r,s’,a’) by
Y=r+y-Qq(a,s;0).
e As before, for the on-policy case, we have the quadratic prediction error
(Y —Qx(a,s; 0))>.

e Semi-gradient: Only take derivative for the Q,(a,s; 0) part, but not for the
prediction target Y:
— (Y —Qx(a,s:0))-VQ(a,s; 6).

e Stochastic gradient descent updating step: Replace 6 by

0+a-(Y—Qr(a,s;0)) VeQ(a,s;0).

15/20

Off policy variant

e As before, can replace a’ by the estimated optimal action.
e Change the prediction target to

Y =r+y-max Q.(a’,s’; 6).
a/

e Updating step as before, replacing 6 by

6+ o-(Y—Q.(a,s;0)) VeQ.(a,s;0).

16/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Multi-step updates

e All methods discussed thus far are one-step methods.
e After observing (s,a,r,s’,a’), only Q(a,s) is targeted for an update.

e But we could pass that new information further back in time, since

tk
Q(a,s)=E [Z Y Re+ ¥ Q(Atsk11.Stiki1)lAr =a, St = | .
=

e One possibility: at time t+k + 1, update 6 using the prediction target
.tk
Yi = Z Vt_th+7}<Qn(At+k73t+k)~
=t
e k-step Sarsa: At time t+k, replace 6 by

6+a- (Y{‘ —Qz(At,St; 9)) -VoQr(At,St;0).

17/20

TD(A) algorithm

e Multi-step updates can result in faster learning.

We can also weight the prediction targets for different numbers of steps, e.g.
using weights AX:

thk
Ye=Y ¥ R+ ¥ Qa(Arikirs Serkin)s
t'=t

Yt =(1-2)) Ak vE
k=1

But don't we have to wait forever before we can make an update based on Y2?

Note quite, since we can do the updating piece-wise!

This idea leads to the so-called TD(A) algorithm.

18/20

Eligibility traces

e For TD(A), we proceed as for one-step Sarsa, using the prediction target

Yt =Rt+ 7 Qz(Ats1,St41:0).

But we replace the gradient Vo Qr(A¢,St; 6) by a weighted average of past
gradients, the so-called eligibility trace: Let Zo = 0 and

Zi = ’}/QL L 1 +VGQH(AUST; 9)

Updating step: At time t replace 6 by

0+ a- (Yt — Qn(At,St; 6)) -Zt.

This exactly implements the updating by Yf in the long run.

This is one of the most popular and practically successful reinforcement
learning algorithms.

19/20

References

o Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

° Francois-Lavet, V., Henderson, P, Islam, R., Bellemare, M. G., and Pineau, J.
(2018). An introduction to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219-354.

20/20

	Markov decision problems
	Expected updates - dynamic programming
	Sample updates
	Approximation
	Eligibility traces
	References

