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Outline

e |dentification

e Testing:
* Asymptotic inference.

e Randomization inference.

e Power calculations.
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Takeaways for this part of class

e With exogenous assignment, marginal distributions
of potential outcomes are identified.

e Standard errors can be calculated as in intro econometrics.

e Alternatively, we can use randomization inference:
e Condition on the sample, potential outcomes.

e Consider only randomness coming from treatment assignment.

e Under the null of no treatment effects on any unit,
this randomization distribution is known.

e Basic considerations for experimental design:
® With equal variances, a 50/50 split of the sample
minimizes the estimator variance.

® The power of tests for zero average treatment effect
is a function of sample size and the true treatment effect.

® \We can use this to choose the sample size.
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|dentification in Randomized Experiments

e Randomization implies:
(Y7,Yo) independentof D, or (Y7,Yp) LD.
e We have that E[Yy|D = 1] = E[Y|D = 0] and therefore
oarer = E[Y1 = Yo[D =T] = E[Y|D =1] - E[Y|D = 0]
¢ Also, we have that
oae = E[Y1—Yo] = E[Y1—Yo|D =1] =E[Y|D =1] - E[Y|D = (]
e Asaresult,

E[Y|D =1]—E[Y|D = 0] = otate = oateT

Difference in Means
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|dentification in Randomized Experiments

e The identification result extends beyond average treatment effects.
e Given random assignment (Y7,Yp) L D:

Fy,(y) = Pr(Yo<y)=Pr(Yo<y|D=0)
Pr(Y <y|D=0)

e Similarly,
Fy,(y) =Pr(Y <y|D=1).

e So effect of the treatment at any quantile, Qg(Y7) — Qg (Yo) is identified.
® Randomization identifies the entire marginal distributions of Yy and Y4

¢ Does not identify the quantiles of the effect: Qg(Y4 — Yy) (the difference of
quantiles is not the quantile of the difference)
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Estimation in Randomized Experiments

e Consider a randomized trial with N individuals. Suppose that the estimand of
interest is ATE:

aare = E[Y1—Yo] = E[Y|D =1] - E[Y|D = 0].
e Using the analogy principle, we construct an estimator:
=Y —Vo,
where YD :
yooxfibi 1 Y.
UL N

o YYi-(1-Dj) 1
Vo=l U2 _ vy,
° Y(1-D;) NOD,Z::0

with N, :ZiDi and No=N-—N;.

e o is an unbiased and consistent estimator of o7E.
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Testing in Large Samples: Two Sample t-Test
¢ Notice that:

T S N(0.)
of , o
N, N

where

and 85 is analogously defined.

e |n particular, let

o
t J—
=2 =2
o7 , %
N; " No

* We reject the null hypothesis Hg: aare = 0 against the alternative Hq: oa7e # 0

at the 5% significance level if |t| > 1.96.
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Testing in Small Samples: Fisher's Exact Test

e Test of differences in means with large N:

Ho : E[Y1] = E[Yo], H:E[Y1] #E[Yo]

Fisher's Exact Test with small N:

Ho:Yi=Ys, Hi:Yq 75 Yo (sharp ﬂU”)

Let Q be the set of all possible randomization realizations.

We only obser\_/e th_e outcomes, Y;, for one realization of the experiment. We
calculate & = Y7 —Yj.

Under the sharp null hypothesis we can calculate the value that the difference
of means would have taken under any other realization, &(®), for @ € Q.
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Testing in Small Samples: Fisher's Exact Test

Suppose that we assign 4 individuals out of 8 to the treatment:

Y; 2 4 6 10 6 0 1 1
D; 17171 100 0 0|a=6

a()
w=1 1 1 1 1 0 0 0 0] 6
=2 1 1 1 0 100 0| 4
=3 1 1 1 0 0 1 0 0] 1
w=4 1 1 1 0 0 0 1 0| 15
®=70 0 0 0 0 1 1 1 1] 6

e The randomization distribution of & (under the sharp null hypothesis) is
Pr(a < 2) = 75 Lwea {a(0) < 2}

e Now, findz =inf{z: P(|a| > z) < 0.05}

¢ Reject the null hypothesis, Hg: Yq; — Yo; = 0 for all i, against the alternative
hypothesis, Hy: Y4; — Yq; # 0 for some i, at the 5% significance level if |a| > Z
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Testing in Small Samples: Fisher's Exact Test

Randomization Distribution of the Difference in Means
T T T T T T

12r ] - J
Diff. in Means

10
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Experimental Design: Relative Sample Sizes for Fixed N

Suppose that you have N experimental subjects and you have to decide how
many will be in the treatment group and how many in the control group.

We know that:
2 52

Ve Voo | s — e 814 %0
Y1—Yo (M ”0’N1+N0>'

We want to choose N; and Ny, subject to N7+ Ng = N, to minimize the variance
of the estimator of the average treatment effect.

The variance of Y; — Yy is:
2 2
o v _ﬁ o)
var(Y1—Yo) = pN+ A=p)N

where p = N;/N is the proportion of treated in the sample.

10/21



Experimental Design: Relative Sample Sizes for Fixed N

Practice problem

Derive the value of p which minimizes the variance
of the estimator of the average treatment effect.
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Experimental Design: Relative Sample Sizes for Fixed N
e Find the value p* that minimizes var(Y; — Yp):

Lo % g
p2N — (1-p*)2N

e Therefore:

and
o] 1

P= o1 +09 1+00/01

e A‘rule of thumb” for the case o1 ~ oy is px = 0.5

e For practical reasons it is sometimes better to choose unequal sample sizes
(even if oy ~ ap)
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Experimental Design: Power Calculations to Choose N

e Recall that for a statistical test:
® Type | error: Rejecting the null if the null is true.

® Type Il error: Not rejecting the null if the null is false.
e Size of a test is the probability of type | error, usually 0.05.

e Power of a test is one minus the probability of type Il error, i.e. the probability of
rejecting the null if the null is false.

e Statistical power increases with the sample size.
e But when is a sample “large enough™?

e We want to find N such that we will be able to detect an average treatment
effect of size a or larger with high probability.
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Experimental Design: Power Calculations to Choose N

e Assume a particular value, o, for uy — ug.

1 Let&:\_ﬁ—\_’o and
612 Gg

se(a)= .
(@) N TN
e For alarge enough sample, we can approximate:

a—o
se(@)

e Therefore, the t-statistic for a test of significance is:

t= s.e(?(&) NN<sea@) 1) '

~N(0,1).
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Probability of Rejection if g — g =0

-1.96 1.96
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Power

Practice problem

Derive the probability of rejection as a function of «, p, and N.
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=

Probability of Rejection if uq — g

-1.96
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Experimental Design: Power Calculations to Choose N
® The probability of rejecting the null 7 — g =0 is:
Pr(lt| >1.96) = Pr(t<—1. 96)+Pr(t>‘l 96)
= Pr(t-— < -196— @ >
( ( ) s.e a)
+ Pr< L

e@ T sel
:q,(_

e 12)

* Suppose that p =1/2 and 6 = 62 = 62. Then,

. c? c? 20
se(d)=¢|—5+—5=—F.

N/2 N2~ UN
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Power Functions with p =1/2 and 6? = ¢?
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General formula for the power function (p # 1/2, 63 # o?)

Pr(reject i — o = 0fpr — o =

d)( 1.96 — a/,/g;v )
62
+<1<D<1.96oc/ pT1v+(1

1. o minimum detectable magnitude of treatment effect
2. Power value (usually 0.80 or higher)
3. o2 and o2 (usually 62 = 62) (e.g., using previous measures)

4. p: proportion of observations in the treatment group If o7 = og, then the power
is maximized by p = 0.5

%)

To choose N we need to specify:
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