14.385 Nonlinear Econometric Analysis Probably approximately correct learning

Maximilian Kasy

Department of Economics, MIT

Fall 2022

Outline

- Definitions:
 - Classification and prediction problems.
 - Empirical risk minimization.
 - PAC learnability.
- Proving the "Fundamental Theorem of statistical learning:"
 - ε -representative samples.
 - Uniform convergence.
 - No free lunch.
 - Shatterings.
 - VC dimension.

Takeaways for this part of class

- Classification and prediction is about out-of-sample prediction errors.
- These can be decomposed into an approximation error ("bias") and an estimation error ("variance").
- There is a trade-off between the two.
 Larger classes of predictors imply less approximation error (no "underfitting"), but more estimation error ("overfitting").
- The worst-case estimation error depends on the VC-dimension of the class of predictors considered.

Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

References

Setup and notation

- Features (predictive covariates): X
- Labels (outcomes): $Y \in \{0,1\}$
- Training data (sample): $S = \{(X_i, Y_i)\}_{i=1}^n$
- Data generating process: (X_i, Y_i) are i.i.d. draws from a distribution \mathcal{D}
- Prediction rules (hypotheses): $h: X \to \{0,1\}$

Learning algorithms

• Risk (generalization error): Probability of misclassification

$$L(h, \mathcal{D}) = E_{(X,Y) \sim \mathcal{D}} [\mathbf{1}(h(X) \neq Y)].$$

• Empirical risk: Sample analog of risk,

$$L(h,S) = \frac{1}{n} \sum_{i} \mathbf{1}(h(X) \neq Y).$$

• Learning algorithms map samples $S = \{(X_i, Y_i)\}_{i=1}^n$ into predictors h_S .

Empirical risk minimization

Optimal predictor:

$$h_{\mathcal{D}}^* = \underset{h}{\operatorname{argmin}} \ L(h, \mathcal{D}) = \mathbf{1}(E_{(X,Y) \sim \mathcal{D}}[Y|X] \geq 1/2).$$

- Hypothesis class for h: ℋ.
- Empirical risk minimization:

$$h_{\mathcal{S}}^{ERM} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} L(h, \mathcal{S}).$$

 Special cases (for more general loss functions):
 Ordinary least squares, maximum likelihood, minimizing empirical risk over model parameters.

Practice problem

How does empirical risk minimization relate

- 1. to ordinary least squares, and
- 2. to maximum likelihood estimation?

(Agnostic) PAC learnability

Definition 3.3

A hypothesis class ${\mathcal H}$ is agnostic probably approximately correct (PAC) learnable if

- there exists a learning algorithm h_{δ}
- such that for all $arepsilon,\delta\in(0,1)$ there exists an $n<\infty$
- such that for all distributions D

$$L(h_{\mathbb{S}}, \mathbb{D}) \leq \inf_{h \in \mathcal{H}} L(h, \mathbb{D}) + \varepsilon$$

- ullet with probability of at least ${f 1}-{f \delta}$
- over the draws of training samples

$$S = \{(X_i, Y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}.$$

Discussion

- Definition is not specific to 0/1 prediction error loss.
- Worst case over all possible distributions D.
- Requires small regret:
 The oracle-best predictor in H doesn't do much better.
- Comparison to the best predictor in the **hypothesis class** \mathcal{H} rather than to the unconditional best predictor $h_{\mathcal{D}}^*$.
- ⇒ The smaller the hypothesis class ℋ the easier it is to fulfill this definition.
- Definition requires small (relative) loss with high probability, not just in expectation.

arepsilon-representative samples

• Definition 4.1 A training set ${\cal S}$ is called ${m arepsilon}$ -representative if

$$\sup_{h\in\mathcal{H}}|L(h,\mathcal{S})-L(h,\mathcal{D})|\leq\varepsilon.$$

• Lemma 4.2 Suppose that \mathcal{S} is $\varepsilon/2$ -representative. Then the empirical risk minimization predictor $h_{\mathcal{S}}^{ERM}$ satisfies

$$L(h_{\mathbb{S}}^{ERM}, \mathcal{D}) \leq \inf_{h \in \mathcal{H}} L(h, \mathcal{D}) + \varepsilon.$$

• Proof: if S is $\varepsilon/2$ -representative, then for all $h \in \mathcal{H}$

$$L(h_{\mathbb{S}}^{ERM}, \mathbb{D}) \leq L(h_{\mathbb{S}}^{ERM}, \mathbb{S}) + \varepsilon/2 \leq L(h, \mathbb{S}) + \varepsilon/2 \leq L(h, \mathbb{D}) + \varepsilon.$$

Uniform convergence

- Definition 4.3

 H has the uniform convergence property if
 - for all $\varepsilon, \delta \in (0,1)$ there exists an $n < \infty$
 - such that for all distributions D
 - with probability of at least 1δ over draws of training samples $S = \{(X_i, Y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}$
 - it holds that S is ε -representative.
- Corollary 4.4

 If H has the uniform convergence property, then
 - 1. the class is agnostically PAC learnable, and
 - 2. h_8^{ERM} is a successful agnostic PAC learner for \mathcal{H} .
- Proof: From the definitions and Lemma 4.2.

Finite hypothesis classes

• Corollary 4.6 Let $\mathcal H$ be a finite hypothesis class, and assume that loss is in [0,1]. Then $\mathcal H$ enjoys the uniform convergence property, where we set

$$n = \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\varepsilon^2}
ight
ceil$$

The class \mathcal{H} is therefore agnostically PAC learnable.

• Sketch of proof: Union bound over $h \in \mathcal{H}$, plus Hoeffding's inequality,

$$P(|L(h,S)-L(h,D)|>\varepsilon)\leq 2\exp(-2n\varepsilon^2).$$

No free lunch

Theorem 5.1

- Consider any learning algorithm $h_{\mathcal{S}}$ for binary classification with 0/1 loss on some domain \mathcal{X} .
- Let $n < |\mathfrak{X}|/2$ be the training set size.
- Then there exists a \mathcal{D} on $\mathcal{X} \times \{0,1\}$, such that Y = f(X) for some f with probability 1, and
- with probability of at least 1/7 over the distribution of S,

$$L(h_{\mathbb{S}}, \mathfrak{D}) \geq 1/8.$$

- Intuition of proof:
 - Fix some set $\mathcal{C} \subset \mathcal{X}$ with $|\mathcal{C}| = 2n$,
 - consider \mathcal{D} uniform on \mathcal{C} , and corresponding to arbitrary mappings Y = f(X).
 - Lower-bound worst case $L(h_S, \mathcal{D})$ by the average of $L(h_S, \mathcal{D})$ over all possible choices of f.
- Corollary 5.2 Let $\mathcal X$ be an infinite domain set and let $\mathcal H$ be the set of all functions from $\mathcal X$ to $\{0,1\}$. Then $\mathcal H$ is not PAC learnable.

Error decomposition

$$egin{aligned} L(h_{\mathbb{S}}, \mathcal{D}) &= arepsilon_{\mathsf{app}} + arepsilon_{\mathsf{est}} \ arepsilon_{\mathsf{h} \in \mathcal{H}} L(h, \mathcal{D}) \ arepsilon_{\mathsf{est}} &= L(h_{\mathbb{S}}, \mathcal{D}) - \min_{\mathsf{h} \in \mathcal{H}} L(h, \mathcal{D}). \end{aligned}$$

- Approximation error: ε_{app} .
- Estimation error: ε_{est} .
- Bias-complexity tradeoff: Increasing $\mathcal H$ increases ε_{est} , but decreases ε_{app} .
- \bullet Learning theory provides bounds on $\varepsilon_{\rm est}.$

Practice problem

Write out the approximation error and the (expected) estimation error for the case where

- 1. loss is given by the squared prediction error, and
- 2. \mathcal{H} is given by the set of linear predictors.

Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

References

Shattering

From now on, restrict to $Y \in \{0,1\}$.

Definition 6.3

- A hypothesis class H
- shatters a finite set $\mathbf{C} \subset \mathfrak{X}$
- if the restriction of \mathcal{H} to C (denoted \mathcal{H}_C)
- is the set of all functions from C to $\{0,1\}$.
- In this case: $|\mathcal{H}_C| = 2^{|C|}$.

VC dimension

Definition 6.5

- The VC-dimension of a hypothesis class \mathcal{H} , $VCdim(\mathcal{H})$,
- is the maximal size of a set $C \subset X$ that can be shattered by \mathcal{H} .
- ullet If ${\mathcal H}$ can shatter sets of arbitrarily large size
- ullet we say that ${\mathcal H}$ has infinite VC-dimension.

Corollary of the no free lunch theorem:

- Let $\mathcal H$ be a class of infinite VC-dimension.
- Then H is not PAC learnable.

Examples

- Threshold functions: $h(X) = \mathbf{1}(X \le c)$. VCdim = 1
- Intervals: $h(X) = \mathbf{1}(X \in [a,b])$. VCdim = 2
- Finite classes: $h \in \mathcal{H} = \{h_1, \dots, h_n\}$. $VCdim \leq \log_2(n)$
- *VCdim* is not always # of parameters: $h_{\theta}(X) = \lceil .5sin(\theta X) \rceil$, $\theta \in \mathbb{R}$. *VCdim* = ∞ .

The Fundamental Theorem of Statistical learning

Theorem 6.7

- ullet Let ${\mathcal H}$ be a hypothesis class of functions
- from a domain \mathfrak{X} to $\{0,1\}$,
- and let the loss function be the 0-1 loss.

Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for ${\cal H}.$
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. H has a finite VC-dimension.

Proof

- 1. \rightarrow 2.: Shown above (Corollary 4.4).
- 2. \rightarrow 3.: Immediate.
- 3. \rightarrow 4.: By the no free lunch theorem.
- 4. \rightarrow 1.: That's the tricky part.
 - Sauer-Shelah-Perles's Lemma.
 - Uniform convergence for classes of small effective size.

Growth function

• The growth function of \mathcal{H} is defined as

$$au_{\mathcal{H}}(n) := \max_{C \subset \mathcal{X}: |C| = n} |\mathcal{H}_C|.$$

• Suppose that $d = VCdim(\mathcal{H}) \le \infty$. Then for $n \le d$, $\tau_{\mathcal{H}}(n) = 2^n$ by definition.

Sauer-Shelah-Perles's Lemma

Lemma 6.10 For
$$d = VCdim(\mathcal{H}) \leq \infty$$
,
$$\tau_{\mathcal{H}}(b) \leq \max_{C \subset \mathcal{X}: |C| = n} |\{B \subseteq C: \mathcal{H} \text{ shatters } B\}|$$

$$\leq \sum_{i=0}^d \binom{n}{i} \leq \left(\frac{en}{d}\right)^d.$$

- First inequality is the interesting / difficult one.
- Proof by induction.

Uniform convergence for classes of small effective size

Theorem 6.11

- For all distributions $\mathfrak D$ and every $\delta \in (0,1)$
- with probability of at least 1δ over draws of training samples $S = \{(X_i, Y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}$,
- we have

$$\sup_{h\in\mathcal{H}}|L(h,\mathcal{S})-L(h,\mathcal{D})|\leq \frac{4+\sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}}.$$

Remark

- We already saw that uniform convergence holds for finite classes.
- This shows that uniform convergence holds for classes with polynomial growth of

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \Upsilon: |C| = m} |\mathcal{H}_C|.$$

• These are exactly the classes with finite VC dimension, by the preceding lemma.

References

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press, chapters 2-6.