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Outline

Kernel regression: Local weighted average of outcomes.

Tuning parameter: Bandwidth.

Uniform confidence bands.

Boundary bias.

Series regression.

Linear smoothers.
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Takeaways for this part of class

e Bandwidth governs variance-bias tradeoff:
¢ Larger bandwidth = Smaller variance.

® Smaller bandwidth = Smaller bias.

e Cross-validation
® can be used to choose optimal bandwidth,

® s easy to compute for linear smoothers.

e Bias is larger on the boundary.
This can be reduced using local linear regression.

e A number of alternative non-parametric estimators
can be thought of as linear smoothers.
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Nonparametric Regression Estimation

e \We use nonparametric regression when:
® We are interested in the shape of the regression function.

* We do not want to make functional form assumptions.

* We are not directly interested in the regression function but we need an estimate
to plug it in a second step estimator.

¢ Three classic methods:
e Kernel regression.

® Series regression.

® | ocal linear regression.
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Linear Regression
OLS: Assume linearity and minimize sum of square residuals.

Linear regression
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But true regression (conditional expectation) may not be linear.
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Kernel Regression (Nadaraya-Watson)

e Suppose we want to estimate the regression:
m(Xo) = E[Y|X = Xo].

e Akernel regression is a weighted average:

N
Xo) = Y WY,
i=

Xi—Xo
<(*5°)

Wi = iK<X x0>

=1

where

e Observations close to xg get large weights and observations distant from xg
get small weights.
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Kernel Regression
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Kernel Regression

Kernel regression, bandwidth = 0.80
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Kernel Regression

Kernel regression, bandwidth = 0.80
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Kernel Regression

Kernel regression, bandwidth = 0.80
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Kernel Regression

Kernel regression, bandwidth = 0.40
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Kernel Regression

Kernel regression, bandwidth = 0.80 Kernel regression, bandwidth = 0.40
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The bandwidth h is a smoothing parameter:
= Large h makes regression smooth

= Small h makes regression wiggly
11/26



Properties of Kernel Regression Estimators
e Assume that X € R¥.

e |f N — oo, h — 0, and NhK — o, (and other regularity conditions hold) then
m(xo) 2 m(xo).
e If, in addition, Nhkt4 — 0, then:

VNRK (@ (x0) — m(x0)) S N (o, o?(xo) / K(z)2d2> ,

where 62(xg) = var(Y|X = Xq).

e The standard error of m(x) can be estimated using sample analogs,

R 1 62(x,) vz
S(xp) = <Nh ?(Xo) /K(z)2d2> ,

or the bootstrap.
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Choosing the Smoothing Parameter
¢ Eyeballing.

¢ Plug-in:

e Define the mean square error as:
MSE(h) = / (M(x) — m(x)) > F(x)dx.

* A MSE-minimizing bandwidth sequence is given by:

h* = CN_1/(k+4),
where the constant ¢ depends on K(z), m(x), and f(x).

¢ Estimation of ¢ by plug-in is possible but cumbersome.
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Choosing the Smoothing Parameter

e Cross validation:
® | et

1Y ~ 2
CcV(h) = N;(Yi—m—i(xi)) )

where m_;(X;) is the leave-i-out kernel regression estimator of m(X;) (with
bandwidth h).

® |et hey be the bandwidth sequence that minimizes CV(h).

® |t can be shown that:
MSE(hcy)

miny MSE(h) '
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Uniform Confidence Bands

e Consider the univariate case (k =1).
e | et X be a compact subset of the support of X. Make X = [0,1].
e The goal is to obtain a band I = [c)(x),cu(x)], such that
Pr(m(x) eT(x),Vx eX)—1-a. ©)

¢ This is done through an approximation to the large sample behavior of

supxﬁ( ())1/2|r71(x)—m(x)|.

xeX (X)
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Uniform Confidence Bands

°o | et

~ ! 2
i) :rﬁ(x)i{c(;"+6+215|n (M)F(x)
where 6 = +/2In(1/h), and exp(—2exp(—C¢)) =1—a.

Then, under regularity conditions, in particular Nh® — 0, equation (1) holds.

Bootstrap confidence interval are also possible.

See Hardle and Linton (1994) for additional detail and references.
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Kernel Regression: Boundary Bias

Consider xq at the boundary of the support of X.
Y

A

Y

Xo
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Kernel Regression: Boundary Bias

Consider xq at the boundary of the support of X.
Y

— Trueregression value

>
'

X0 X
= There is a bias because all observations that are close to the boundary have
regression values smaller than the regression value of xq.
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Alternative non-parametric regression methods



Series Regression
Fit a polynomial of order p:
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Local Linear Regression
For each X = xp, minimize:

N (Xi—x
YK (,,0) (Y~ bo —biX;)?,

i=1
Local linear regression, bandwidth = 0.80 Local linear regression, bandwidth = 0.40
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Local Linear and Polynomial Regression

e |ocal polynomial regression extends this estimator to polynomials of order p:
N
Xi—
K( XO) (Vi —bo — b1X; — - — bpXP)2.
i=1

Kernel regression: Special case, using p = 0.

Series regression: Special case, using a constant kernel.

Local polynomial regression can easily be estimated by the intercept value Bo
obtained from minimizing:

i (X XO) (Yi—bo — by(X; —xo) — - — bp(X; — X0)P)?.

i=1

The v-th derivative of the regression function at xo can be estimated by v!ﬁv.
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Other Nonparametric Regression Methods

¢ k-nearest neighbors: m(xq) = average Y; for the k observations X; that are
closest to Xg.

* Smoothing splines: Let m(x) be the twice differentiable function defined on
[a,b] that minimizes

'MZ

Il
lN

+/l/ x))?dx.

The second term is a roughness penalty, and A > 0 is a scalar smoothing
parameter. Remarkably, the minimization can be solved in closed form and
leads to an easily computable linear smoother.
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Linear Smoothers

* An estimator m(x) is a linear smoother if for each x there exists a vector
w(x) = (wq(X),...,wn(x)), such that:

e Examples:
e Kernel regression:
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Linear Smoothers

® Series regression:

-1

x)=2 (ﬁl:ZZf) Z

- | J I
=1

where
1 1
Xi
Zi= , and z=
XP xP

e |ocal Polynomial Regression:

)=z (£(57)22) x(%%)z.
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Cross-Validation of Linear Smoothers
e Cross-validation may look computationally expensive, as minimizing the
cross-validation function

(Vi —m_i(X))*
1

CV=

N
=

Z| =

seems to require computing the leave-one-out estimator N times for each value
of h (or p for series).

e Fortunately, the cross-validation function simplifies considerable for linear
smoothers: )
1T & (Yi—m(X)
V=— —2 .
V=X (Fui))

e Using this formulation, the estimator only needs to be computed once for each
value of h (or p for series).

24/26



Two-Step Estimation with a Nonparametric First Step

e There are many instances (e.g., generated regressors, propensity score
weighting) where the parameter of interest 6y solves:

Elm(Z,6,9)]=0

in the population, and where g is an unknown functions (e.g., regression
function, density function).

¢ In these instances, if the functional form of g is left unspecified, g is typically
estimated in two-steps:

1. Estimate g nonparametrically.
2. Estimate 6q by solving:

2=
™=

Il
EN

m(Z,', 9,/9\) =0.
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