14.385 Nonlinear Econometric Analysis Kernel regression

Maximilian Kasy

Department of Economics, MIT

Fall 2022

Outline

- Kernel regression: Local weighted average of outcomes.
- Tuning parameter: Bandwidth.
- Uniform confidence bands.
- Boundary bias.
- Series regression.
- Linear smoothers.

Takeaways for this part of class

- Bandwidth governs variance-bias tradeoff:
 - Larger bandwidth ⇒ Smaller variance.
 - Smaller bandwidth ⇒ Smaller bias.
- Cross-validation
 - can be used to choose optimal bandwidth,
 - is easy to compute for linear smoothers.
- Bias is larger on the boundary.
 This can be reduced using local linear regression.
- A number of alternative non-parametric estimators can be thought of as linear smoothers.

Tuning

Inference

Boundary bias

Alternative non-parametric regression methods

References

Nonparametric Regression Estimation

- We use nonparametric regression when:
 - We are interested in the shape of the regression function.
 - We do not want to make functional form assumptions.
 - We are not directly interested in the regression function but we need an estimate to plug it in a second step estimator.
- Three classic methods:
 - Kernel regression.
 - Series regression.
 - Local linear regression.

Linear Regression

OLS: Assume linearity and minimize sum of square residuals.

But true regression (conditional expectation) may not be linear.

Kernel Regression (Nadaraya-Watson)

• Suppose we want to estimate the regression:

$$m(x_0) = E[Y|X = x_0].$$

A kernel regression is a weighted average:

$$\widehat{m}(x_0) = \sum_{i=1}^N w_i Y_i,$$

where

$$w_i = \frac{K\left(\frac{X_i - X_0}{h}\right)}{\sum_{i=1}^{N} K\left(\frac{X_j - X_0}{h}\right)}.$$

• Observations close to x_0 get large weights and observations distant from x_0 get small weights.

The bandwidth h is a **smoothing parameter**:

- \Rightarrow Large h makes regression smooth
- \Rightarrow Small **h** makes regression wiggly

Properties of Kernel Regression Estimators

- Assume that $X \in \mathbb{R}^k$.
- If $N \to \infty$, $h \to 0$, and $Nh^k \to \infty$, (and other regularity conditions hold) then

$$\widehat{m}(x_0) \stackrel{p}{\rightarrow} m(x_0).$$

• If, in addition, $Nh^{k+4} \rightarrow 0$, then:

$$\sqrt{Nh^k}(\widehat{m}(x_0)-m(x_0))\stackrel{d}{\to} N\left(0,\frac{\sigma^2(x_0)}{f(x_0)}\int K(z)^2dz\right),$$

where $\sigma^{2}(x_{0}) = \text{var}(Y|X = x_{0})$.

• The standard error of $\widehat{m}(x)$ can be estimated using sample analogs,

$$\widehat{s}(x_0) = \left(\frac{1}{Nh} \frac{\widehat{\sigma}^2(x_0)}{\widehat{f}(x_0)} \int K(z)^2 dz\right)^{1/2},$$

or the bootstrap.

Choosing the Smoothing Parameter

- Eyeballing.
- Plug-in:
 - Define the mean square error as:

$$MSE(h) = \int (\widehat{m}(x) - m(x))^2 f(x) dx.$$

A MSE-minimizing bandwidth sequence is given by:

$$h^* = c N^{-1/(k+4)}$$

where the constant c depends on K(z), m(x), and f(x).

• Estimation of c by plug-in is possible but cumbersome.

Tuning

Inference

Boundary bias

Alternative non-parametric regression methods

References

Choosing the Smoothing Parameter

Cross validation:

Let

$$CV(h) = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{m}_{-i}(X_i))^2,$$

where $\widehat{m}_{-i}(X_i)$ is the leave-*i*-out kernel regression estimator of $m(X_i)$ (with bandwidth h).

- Let h_{CV} be the bandwidth sequence that minimizes CV(h).
- It can be shown that:

$$\frac{MSE(h_{CV})}{\min_h MSE(h)} \stackrel{p}{\to} 1.$$

Uniform Confidence Bands

- Consider the univariate case (k = 1).
- Let \mathcal{X} be a compact subset of the support of X. Make $\mathcal{X} = [0,1]$.
- The goal is to obtain a band $\widehat{I}(x) = [\widehat{c}_I(x), \widehat{c}_u(x)]$, such that

$$\Pr(m(x) \in \widehat{I}(x), \forall x \in \mathcal{X}) \to 1 - \alpha.$$
 (1)

This is done through an approximation to the large sample behavior of

$$\sup_{x\in\mathcal{X}}\sqrt{Nh}\left(\frac{f(x)}{\sigma^2(x)}\right)^{1/2}|\widehat{m}(x)-m(x)|.$$

Tuning

Inference

Boundary bias

Alternative non-parametric regression methods

References

Uniform Confidence Bands

Let

$$\widehat{I}(x) = \widehat{m}(x) \pm \left\{ \frac{c_{\alpha}}{\delta} + \delta + \frac{1}{2\delta} \ln \left(\frac{\int (K'(z))^2 dz}{4\pi^2 \int K^2(z) dz} \right) \right\} \widehat{s}(x)$$

where $\delta = \sqrt{2\ln(1/h)}$, and $\exp(-2\exp(-c_{\alpha})) = 1 - \alpha$.

- Then, under regularity conditions, in particular $Nh^5 \rightarrow 0$, equation (1) holds.
- Bootstrap confidence interval are also possible.
- See Härdle and Linton (1994) for additional detail and references.

Tuning

Inference

Boundary bias

Alternative non-parametric regression methods

References

Consider x_0 at the boundary of the support of X.

 \Rightarrow There is a bias because all observations that are close to the boundary have regression values smaller than the regression value of x_0 .

Tuning

Inference

Boundary bias

Alternative non-parametric regression methods

References

Series Regression

Fit a polynomial of order **p**:

$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 X_i - b_2 X_i^2 - \dots - b_k X_i^p)^2.$$

Local Linear Regression

For each $X = x_0$, minimize:

$$\sum_{i=1}^{N} K\left(\frac{X_{i}-X_{0}}{h}\right) (Y_{i}-b_{0}-b_{1}X_{i})^{2},$$

Local Linear and Polynomial Regression

• Local polynomial regression extends this estimator to polynomials of order p:

$$\sum_{i=1}^N K\left(\frac{X_i-x_0}{h}\right) (Y_i-b_0-b_1X_i-\cdots-b_pX_i^p)^2.$$

- Kernel regression: Special case, using p = 0.
- Series regression: Special case, using a constant kernel.
- Local polynomial regression can easily be estimated by the intercept value $\widehat{\beta}_0$ obtained from minimizing:

$$\sum_{i=1}^{N} K\left(\frac{X_{i}-x_{0}}{h}\right) (Y_{i}-b_{0}-b_{1}(X_{i}-x_{0})-\cdots-b_{p}(X_{i}-x_{0})^{p})^{2}.$$

• The v-th derivative of the regression function at x_0 can be estimated by $v!\widehat{\beta}_v$.

Other Nonparametric Regression Methods

- **k-nearest neighbors**: $\hat{m}(x_0)$ = average Y_i for the k observations X_i that are closest to x_0 .
- **Smoothing splines**: Let $\hat{m}(x)$ be the twice differentiable function defined on [a,b] that minimizes

$$\sum_{i=1}^{N} (Y_i - \hat{m}(X_i))^2 + \lambda \int_{a}^{b} (\hat{m}''(x))^2 dx.$$

The second term is a roughness penalty, and $\lambda \geq 0$ is a scalar smoothing parameter. Remarkably, the minimization can be solved in closed form and leads to an easily computable linear smoother.

Linear Smoothers

• An estimator $\widehat{m}(x)$ is a **linear smoother** if for each x there exists a vector $w(x) = (w_1(x), \dots, w_N(x))$, such that:

$$\widehat{m}(x) = \sum_{i=1}^{N} w_i(x) Y_i.$$

- Examples:
 - Kernel regression:

$$w_i(x) = \frac{K\left(\frac{X_i - x}{h}\right)}{\sum_{j=1}^{N} K\left(\frac{X_j - x}{h}\right)}.$$

Linear Smoothers

• Series regression:

$$w_i(x) = z' \left(\sum_{j=1}^N Z_j Z_j' \right)^{-1} Z_i,$$

where

$$Z_i = \left(egin{array}{c} 1 \ X_i \ dots \ X_i^p \end{array}
ight) \quad ext{and} \quad z = \left(egin{array}{c} 1 \ x \ dots \ x^p \end{array}
ight)$$

• Local Polynomial Regression:

$$w_i(x) = z' \left(\sum_{j=1}^N K\left(\frac{X_j - x}{h}\right) Z_j Z_j' \right)^{-1} K\left(\frac{X_i - x}{h}\right) Z_i.$$

Cross-Validation of Linear Smoothers

 Cross-validation may look computationally expensive, as minimizing the cross-validation function

$$CV = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{m}_{-i}(X_i))^2$$

seems to require computing the leave-one-out estimator N times for each value of h (or p for series).

• Fortunately, the cross-validation function simplifies considerable for linear smoothers:

$$CV = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_i - \widehat{m}(X_i)}{1 - w_i(X_i)} \right)^2.$$

• Using this formulation, the estimator only needs to be computed once for each value of *h* (or *p* for series).

Two-Step Estimation with a Nonparametric First Step

• There are many instances (e.g., generated regressors, propensity score weighting) where the parameter of interest θ_0 solves:

$$E[m(Z,\theta,g)]=0$$

in the population, and where g is an unknown functions (e.g., regression function, density function).

- In these instances, if the functional form of g is left unspecified, θ_0 is typically estimated in two-steps:
 - 1. Estimate g nonparametrically.
 - 2. Estimate θ_0 by solving:

$$\frac{1}{N}\sum_{i=1}^{N}m(Z_{i},\theta,\widehat{g})=0.$$

References

Härdle, W. and Linton, O. (1994). Applied nonparametric methods. Handbook of econometrics, 4:2295–2339

These slides are based on the slides by **Alberto Abadie** for previous iterations of 14.385.