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Outline

e Goal:
® From observation of choices, infer preferences,

¢ which allow to predict choice probabilities in counterfactual settings.

e Static multinomial choice:
e Cross-section of individuals who choose between multiple alternatives.

® Choices maximize utility.

® Choice probabilities might depend on choice characteristics
and individual characteristics.

e Dynamic discrete choice:
® Decisions affect both utility now, and future states.

® States evolve according to a Markov transition function.
e Choices maximize expected discounted utility (value function).
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Takeaways for this part of class

e With functional form assumptions and restrictions of heterogeneity,
we can infer preferences from choices.

e Functional form assumptions often have strong implications
for counterfactual behavior.

e Dynamic discrete choice models assume
® Agents have correct knowledge of state transition probabilities,

¢ and solve the full dynamic optimization problem.

e Actions are observed, utilities are not.

e Reinforcement learning (next part of class) considers the reverse problem:
* \We have to learn transition probabilities from data,

® and want to construct an agent maximizing expected discounted utility.

® Rewards (utilities) are observed, actions are to be chosen.
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Recap: Static multinomial choice



Multinomial Choice Models

e Choices from a set of unordered alternatives.
Examples:
e Commuting mode: car, train, walk, ...

* Mobile phone network.

For a random sample of N individuals, we observe the choice

Y € {0,1,...,m}.

Let Y; =1if Y; =j,and Y;; = 0 otherwise, fori=1,...,Nandj=0,....m.

We observe characteristics of the individual,

X; for i=1,....N (eg.,income).

We may observe covariates with values depending on the alternative,
X; for i=1,...,N and j=0,....m (e.g,prices).
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Multinomial Logit Model

e Suppose first that the covariates only vary across individuals, X;.

The multinomial logit model is then an extension of the basic logit model.

Let pjj = Pr(Y; =j|X;). The multinomial logit model postulates:

eXib
p—y m ) .
Z exiﬁk
k=0

Equal translation of all vectors By to Bk + o
leaves all choice probabilities, pj, unchanged.

Pij

Therefore, we typically normalize Bg = 0. This implies p;/pjo = eXifi.
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Multinomial Logit Model
e The log-likelihood is:

e IB]
ZZYMHPU—ZZY:;M( m eX’ﬁ,>

i=1j=0 i=1j=0

* \We maximize this log-likelihood with respect to B, ..., Bm
(remember that we set By = 0).

e The implied marginal effects is

opi m
3 XU pij (ﬁj —kszikﬁk> :
* B; =0 does notimply dp;j/dX; = 0!

® The average marginal effect is:
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Conditional Logit Model

* Regressors vary by alternative (and possibly by individual), Xj;.

e This model postulates:
eXiP

=m
Z eXiP
k=0

e The model cannot contain variables that do not vary by alternative (like a
constant, or individual income).

Pij

* Imagine that we try to introduce such a variable, Z;, with coefficient a. The
probability of choice j for individual i is now:

Xip+Zio eZiaXiP eXiP
pij - m ! - m ! - m ! '
eXiPt+Zie oz Z eXiP Z eXiP
k=0 k=0 k=0

So, o is not identified.
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Conditional Logit Model

e The marginal effects for the conditional logit model are:
apji/dXij = pii(1—py)B, 9Ipjj/IXik = —PiPikB-

e McFadden (1974) showed that the conditional logit model can be derived as the
solution of a utility maximizing agent with utility from choice j given by

U,‘j = X,/]ﬁ =+ Ujj
where u; are independent and have a type | extreme value distribution.

* By choosing Xj; and B appropriately, it can be shown that the multinomial logit
model is a particular case of the conditional logit model. To simplify, suppose
that there are three alternatives j = 0,1, 2, then we can make:

o-(8) 0-(5) %-(2) #-(2)

obtaining the multinomial logit model.
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Independence of Irrelevant Alternatives (lI1A)

e Conditional logit model = The conditional probability of Y; =j given Y; =j or k
is:
Pjj 1

pj+pik  1+e KiXB’

* Thatis, this conditional probability depends only on Xj; — Xj and not on the
characteristics of other alternatives.

e |t does not change even if other alternatives become available.
This is called independence of irrelevant alternatives (IIA).

e But differently:

Pi _ o(X—Xi)B_
Pik
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The Red Bus/Blue Bus example

Suppose commuters choose between two modes of transportation:
car and red bus.

Initially, pear /Preavus = 1; the choice probability for each mode is 1/2:
Pcar = Predbus = 1/2
Suppose now that a new mode of transportation is introduced: The blue bus.

If consumers do not value the color of the bus (the color of the bus is not in Xj;)
then Predbus/Pbluebus =1

By the IIA property, it is still true that pcar /Preavus = 1.
Therefore, we obtain:

Pcar = Predbus = Pbluebus = 1/3

Just by introducing the blue bus, the choice probability of car went from 1/2 to
1/3. However, because blue and red buses are close substitutes, we would
expect that p..r Stays unchanged.
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lIA and the Random Utility Model

e The conditional logit model can be derived as the solution of an agent
maximizing utility over choices, where utility from choice j is given by

U,'j = X,/JB + Ujj
and uj; are independent and have a type | extreme value distribution.

e The lIA property arises from the combination of two assumptions:

(1) independence between the utilities of different alternatives (given the covariates),

(2) type | extreme value distribution for uj;.

e There exist extensions of the conditional logit model that dispose of the IIA
property by relaxing either (1) or (2). Two models that relax (1):
® nested logit

¢ random coefficient logit
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Recap: Static multinomial choice
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Dynamic Discrete Choice

Consider an agent or set of agents

choosing actions, aj; from a discrete set A = {0,1,...,J}

e over an infinite horizon.

Agents observe state variables Sj; = (Xit, €t).

Xit is observed by the agent and by the econometrician.

€jt is observed by the agent but not observed by the econometrician.
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Example: Rust (1987)

e The agent is Harold Zurcher, superintendent of maintenance at the Madison
(WI) Metropolitan Bus Company

e X is engine mileage for bus i at month t

e ¢; are other characteristics of bus i at month t, which affect Zurcher's
decisions, but unobserved by the econometrician.

® aj; € {0,1} codes Zurcher's bus engine replacement decision
Other applications:
e Retirement decisions,

e occupational choice,

e dynamic discrete games.
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Bellman equation

e Agents’ beliefs about future states follow a Markov transition process with
transition probability function

P(Sit11lait, Sit, 6p).

e The value function Vy(Xj, &) is the solution to the Bellman equation
Ve(Sit) = TeaAX U(aasita 9u) +ﬁ/VB(Sit+1)dP(Sit+1‘avsit7 9p)

where
® Uis the instantaneous utility function,

® [ is the discount factor, (typically imputed, not estimated)

L4 9 = (ep7 eu)

e The optimal decision rule solves the Bellman equation.
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Functional form assumptions
Recall Sit = (Xibgit)-
¢ Additive separability + Logit:
U(avsih 6U) - U(a,Xit, GU) + Ejt(a),

and
* g =(g:(0),&¢(1),...,&:(J)) isiid. acrossiandt,

e with mutually independent (centered) type | extreme value components.
e Conditional independence:
P(Xit11|Xit, €t @it, Op) = P(Xit111Xit, ait, 0p)

¢ Discrete support: X;; has discrete and finite support X.
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Rust (1987)

For the engine replacement application in Rust (1987):
¢ Instantaneous utility is

—c(Xit,0u1) +€(0) ifaz=0

u(a7Xit7 GU) +8(a) - { —9u2 - C(07 9U1) +8(1) if ajt = 1

where

® c(Xjt, 0,1): operating cost of a bus with X mileage (could be, e.g., polynomial),

normalize ¢(0,6,1) =0,

* 0,2 engine replacement cost.
e Mileage (Xj) is discretized in 90 intervals of length 5000.

e Transition probabilities P(Xit11|Xit, ait, 6p):
Multinomial with three values corresponding to [0,5000), [5000,10000),
[10000, ) for mileage between tand t+1.
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Integrated Bellman equation
e Additive separability and Logit and Conditional Independence assumptions
= integrated version of the Bellman equation with closed form:
J

Vo(Xit) = In ( Z exp{u(a,Xit,Ou)

a=0

xeX

+BY, Vo (X)P(Xits1 :x|a,X,~t,6p)}>.

e The conditional choice probabilities are

exp{Ve(a,Xit)}
J

Y exp{Va(j, Xit)}
j=0

P(ai = a|Xit,0) =

where B
Vo(a,Xit) = u(a,Xi,0u) + B Y Vo(X)P(Xjtr1 = x|, Xit, 6p)-
xeX
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Log-likelihood
The log-likelihood is

N T

N T
Y Y InP(ai|Xit, 0) + Y. Y InP(Xjt|ajt—1, Xit—1, 6p)
i=1t=1 i—1t=2

e Transition probabilities are specified as primitives of the model, which makes it
easy to evaluate the second term of the log-likelihood.

Typically, 6y is estimated separately in a first step by maximizing that term.

Evaluating the first term of the likelihood is more difficult because it involves
the integrated value function, Vg(x).

Rust (1987) proposes a nested fixed point algorithm (NFXP):
® Quter loop: Iterates over 6 to maximize the likelihood

* Inner loop: Inside each iteration of the outer loop, iterates the Bellman equation
until convergence to find Vg(x) (this is facilitated by the discrete nature of x)
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Discrete states
e Suppose X = {xy,..., Xk} (in Rust's paper, k = 90).

° |et
u(a,xq,0y)
u(a,@u): :
U(a)xkaeu)
and
p(X1|aaX1’6P) p(Xk|avx'|79P)
F(a) = : - :
p(x'l‘aaxkvep) p(xk|aaxk,9p))
where

p(x’\a,x, Qp) = P(X,'pr-] = x’]a,-t =a,Xi=X, Gp).

e The matrix F(a) can be estimated in the first step from the second term in the
log-likelihood function. So consider it as known for the rest of the argument.
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Value function as fixed point
° |et

Vo (x1)
VQ =
Vo (xx)

be the vectorized version of the value function, Vg(x).

e Then, for any given 8y, Vg is given by the fixed point

Vo =1n (Z exp{u(a,6,)+ BF(a V9}>

e And the conditional choice probabilities are given by

exp (u(a,x,64) + BF(a,x)Vy)

J _ b
Z exp (U(j,X, OU) + ﬁFO,X)V@)
j=0
where F(a,x) = (p(x1|a,X,6p),...,p(Xk|a,x, 6p)).

P(ait = a|Xit = x,0) =
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Two-step GMM estimation

e A problem with the NFXP is its computational cost.
The Bellman equation is solved iteratively in each optimization step.

e The conditional choice probability (CCP) algorithm of Hotz and Miller (1993)
does not require solving the Bellman equation, reducing computational cost
drastically.

e Hotz and Miller notice that, for given values of ,, it is often possible to obtain
estimates V(a, Xit, 0y) of ¥g(a, Xit) from preliminary estimates of 6, and
P(air = a|Xit).

e Then, 6, can be estimated in a second step by GMM. For example, MLE
maximizes

eXp(V(a,’t,th, 6U)

In

=
(gl

I
R
X

1

J
eXp(V(ja Xit7 eu)
j=0
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Two-step estimation example
e Utility function linear in 6, (e.g., polynomial):
u(a,x, 6,) = z(a,x) 6, +¢(a).
e Then, it can be shown
Ve(a,x) = Z(a,x,0) 6, +&(a,x,0),
where Z(a,x, 8) and é(a, x, 8) depend on 6 only through 6, which can be

estimated in a first step, and P(ajt|Xi: = x), which can be estimated
non-parametrically.

* Therefore, we can obtain estimates Z(a, x) and €(a, x) of Z(a,x, 6) and é(a, x, 6),
soV(a,x,8,) =2(a,x)' 6, +¢e(a,x).

e Then, the conditional choice probabilities are approximated as

exp(f(a,x)’eu —|—/é(a,X))
J .

Y exp(Z(j, x) 6y +€(j, X))

j=0

P(a,'t = a‘Xit =X, Gu) =
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