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Outline
• Goal:

• From observation of choices, infer preferences,
• which allow to predict choice probabilities in counterfactual settings.

• Static multinomial choice:
• Cross-section of individuals who choose between multiple alternatives.
• Choices maximize utility.
• Choice probabilities might depend on choice characteristics

and individual characteristics.

• Dynamic discrete choice:
• Decisions affect both utility now, and future states.
• States evolve according to a Markov transition function.
• Choices maximize expected discounted utility (value function).

1 / 22



Takeaways for this part of class
• With functional form assumptions and restrictions of heterogeneity,

we can infer preferences from choices.

• Functional form assumptions often have strong implications
for counterfactual behavior.

• Dynamic discrete choice models assume
• Agents have correct knowledge of state transition probabilities,
• and solve the full dynamic optimization problem.
• Actions are observed, utilities are not.

• Reinforcement learning (next part of class) considers the reverse problem:
• We have to learn transition probabilities from data,
• and want to construct an agent maximizing expected discounted utility.
• Rewards (utilities) are observed, actions are to be chosen.
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Multinomial Choice Models
• Choices from a set of unordered alternatives.

Examples:
• Commuting mode: car, train, walk, ...
• Mobile phone network.

• For a random sample of N individuals, we observe the choice

Yi ∈ {0,1, . . . ,m}.

• Let Yij = 1 if Yi = j, and Yij = 0 otherwise, for i = 1, . . . ,N and j = 0, . . . ,m.

• We observe characteristics of the individual,

Xi for i = 1, . . . ,N (e.g., income).

• We may observe covariates with values depending on the alternative,

Xij for i = 1, . . . ,N and j = 0, . . . ,m (e.g., prices).
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Multinomial Logit Model

• Suppose first that the covariates only vary across individuals, Xi.

• The multinomial logit model is then an extension of the basic logit model.

• Let pij = Pr(Yi = j|Xi). The multinomial logit model postulates:

pij =
eX′iβj

m
∑
k=0

eX′iβk

.

• Equal translation of all vectors βk to βk + α

leaves all choice probabilities, pij, unchanged.

• Therefore, we typically normalize β0 = 0. This implies pij/pi0 = eX′iβj .
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Multinomial Logit Model
• The log-likelihood is:

N
∑
i=1

m
∑
j=0

Yij lnpij =
N
∑
i=1

m
∑
j=0

Yij ln

(
eX′iβj

∑
m
j=0 eX

′
iβj

)
.

• We maximize this log-likelihood with respect to β1, . . . ,βm
(remember that we set β0 = 0).
• The implied marginal effects is

∂pij
∂Xi

= pij

(
βj−

m
∑
k=0

pikβk

)
.

• βj = 0 does not imply ∂pij/∂Xi = 0!
• The average marginal effect is:

1
N

N
∑
i=1

pij

(
βj−

m
∑
k=0

pikβk

)
.
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Conditional Logit Model
• Regressors vary by alternative (and possibly by individual), Xij.
• This model postulates:

pij =
eX
′
ijβ

m
∑
k=0

eX′ikβ

.

• The model cannot contain variables that do not vary by alternative (like a
constant, or individual income).
• Imagine that we try to introduce such a variable, Zi, with coefficient α . The

probability of choice j for individual i is now:

pij =
eX
′
ijβ+Ziα

m
∑
k=0

eX′ikβ+Ziα

=
eZiαeX

′
ijβ

eZiα
m
∑
k=0

eX′ikβ

=
eX
′
ijβ

m
∑
k=0

eX′ikβ

.

So, α is not identified.
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Conditional Logit Model
• The marginal effects for the conditional logit model are:

∂pij/∂Xij = pij(1−pij)β , ∂pij/∂Xik =−pijpikβ .

• McFadden (1974) showed that the conditional logit model can be derived as the
solution of a utility maximizing agent with utility from choice j given by

Uij = X′ijβ +uij

where uij are independent and have a type I extreme value distribution.

• By choosing Xij and β appropriately, it can be shown that the multinomial logit
model is a particular case of the conditional logit model. To simplify, suppose
that there are three alternatives j = 0,1,2, then we can make:

Xi0 =

(
0
0

)
Xi1 =

(
Xi
0

)
Xi2 =

(
0
Xi

)
β =

(
β1
β2

)
,

obtaining the multinomial logit model.
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Independence of Irrelevant Alternatives (IIA)

• Conditional logit model⇒ The conditional probability of Yi = j given Yi = j or k
is:

pij
pij +pik

=
1

1+e−(Xij−Xik)′β
.

• That is, this conditional probability depends only on Xij−Xik and not on the
characteristics of other alternatives.

• It does not change even if other alternatives become available.
This is called independence of irrelevant alternatives (IIA).

• But differently:
pij
pik

= e(Xij−Xik)
′β .
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The Red Bus/Blue Bus example
• Suppose commuters choose between two modes of transportation:

car and red bus.
• Initially, pcar/predbus = 1; the choice probability for each mode is 1/2:

pcar = predbus = 1/2.
• Suppose now that a new mode of transportation is introduced: The blue bus.
• If consumers do not value the color of the bus (the color of the bus is not in Xij)

then predbus/pbluebus = 1.
• By the IIA property, it is still true that pcar/predbus = 1.

Therefore, we obtain:
pcar = predbus = pbluebus = 1/3.

• Just by introducing the blue bus, the choice probability of car went from 1/2 to
1/3. However, because blue and red buses are close substitutes, we would
expect that pcar stays unchanged.
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IIA and the Random Utility Model
• The conditional logit model can be derived as the solution of an agent

maximizing utility over choices, where utility from choice j is given by

Uij = X′ijβ +uij

and uij are independent and have a type I extreme value distribution.

• The IIA property arises from the combination of two assumptions:
(1) independence between the utilities of different alternatives (given the covariates),

(2) type I extreme value distribution for uij.

• There exist extensions of the conditional logit model that dispose of the IIA
property by relaxing either (1) or (2). Two models that relax (1):
• nested logit
• random coefficient logit
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Dynamic Discrete Choice

• Consider an agent or set of agents

• choosing actions, ait from a discrete set A = {0,1, . . . ,J}

• over an infinite horizon.

• Agents observe state variables Sit = (Xit,εit).

• Xit is observed by the agent and by the econometrician.

• εit is observed by the agent but not observed by the econometrician.
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Example: Rust (1987)

• The agent is Harold Zurcher, superintendent of maintenance at the Madison
(WI) Metropolitan Bus Company

• Xit is engine mileage for bus i at month t

• εit are other characteristics of bus i at month t, which affect Zurcher’s
decisions, but unobserved by the econometrician.

• ait ∈ {0,1} codes Zurcher’s bus engine replacement decision
Other applications:
• Retirement decisions,

• occupational choice,

• dynamic discrete games.
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Bellman equation
• Agents’ beliefs about future states follow a Markov transition process with

transition probability function

P(Sit+1|ait,Sit,θp).

• The value function Vθ (Xit,εit) is the solution to the Bellman equation

Vθ (Sit) = max
a∈A

[
U(a,Sit,θu) + β

∫
Vθ (Sit+1)dP(Sit+1|a,Sit,θp)

]
where
• U is the instantaneous utility function,
• β is the discount factor, (typically imputed, not estimated)
• θ = (θp,θu).

• The optimal decision rule solves the Bellman equation.
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Functional form assumptions

Recall Sit = (Xit,εit).
• Additive separability + Logit:

U(a,Sit,θu) = u(a,Xit,θu) + εit(a),

and
• εit = (εit(0),εit(1), . . . ,εit(J)) is i.i.d. across i and t,
• with mutually independent (centered) type I extreme value components.

• Conditional independence:

P(Xit+1|Xit,εit,ait,θp) = P(Xit+1|Xit,ait,θp)

• Discrete support: Xit has discrete and finite support X.
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Rust (1987)
For the engine replacement application in Rust (1987):
• Instantaneous utility is

u(a,Xit,θu) + ε(a) =

{
−c(Xit,θu1) + ε(0) if ait = 0
−θu2−c(0,θu1) + ε(1) if ait = 1

where
• c(Xit,θu1): operating cost of a bus with Xit mileage (could be, e.g., polynomial),

normalize c(0,θu1) = 0,
• θu2: engine replacement cost.

• Mileage (Xit) is discretized in 90 intervals of length 5000.

• Transition probabilities P(Xit+1|Xit,ait,θp):
Multinomial with three values corresponding to [0,5000), [5000,10000),
[10000,∞) for mileage between t and t+ 1.
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Integrated Bellman equation
• Additive separability and Logit and Conditional Independence assumptions
⇒ integrated version of the Bellman equation with closed form:

V̄θ (Xit) = ln

(
J
∑
a=0

exp

{
u(a,Xit,θu)

+ β ∑
x∈X

V̄θ (x)P(Xit+1 = x|a,Xit,θp)

})
.

• The conditional choice probabilities are

P(ait = a|Xit,θ) =
exp{v̄θ (a,Xit)}
J
∑
j=0

exp{v̄θ (j,Xit)}

where
v̄θ (a,Xit) = u(a,Xit,θu) + β ∑

x∈X
V̄θ (x)P(Xit+1 = x|a,Xit,θp).
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Log-likelihood
The log-likelihood is

N
∑
i=1

T
∑
t=1

lnP(ait|Xit,θ) +
N
∑
i=1

T
∑
t=2

lnP(Xit|ait−1,Xit−1,θp)

• Transition probabilities are specified as primitives of the model, which makes it
easy to evaluate the second term of the log-likelihood.

• Typically, θp is estimated separately in a first step by maximizing that term.

• Evaluating the first term of the likelihood is more difficult because it involves
the integrated value function, V̄θ (x).

• Rust (1987) proposes a nested fixed point algorithm (NFXP):
• Outer loop: Iterates over θ to maximize the likelihood
• Inner loop: Inside each iteration of the outer loop, iterates the Bellman equation

until convergence to find V̄θ (x) (this is facilitated by the discrete nature of x)
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Discrete states
• Suppose X = {x1, . . . ,xk} (in Rust’s paper, k = 90).

• Let

u(a,θu) =

 u(a,x1,θu)
...

u(a,xk,θu)


and

F(a) =

 p(x1|a,x1,θp) · · · p(xk|a,x1,θp)
... . . . ...

p(x1|a,xk,θp) · · · p(xk|a,xk,θp))


where

p(x′|a,x,θp) = P(Xit+1 = x′|ait = a,Xit = x,θp).

• The matrix F(a) can be estimated in the first step from the second term in the
log-likelihood function. So consider it as known for the rest of the argument.
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Value function as fixed point
• Let

V̄θ =

 V̄θ (x1)
...

V̄θ (xk)

 .

be the vectorized version of the value function, V̄θ (x).
• Then, for any given θu, V̄θ is given by the fixed point

V̄θ = ln

(
J
∑
a=0

exp
{
u(a,θu) + βF(a)V̄θ

})
.

• And the conditional choice probabilities are given by

P(ait = a|Xit = x,θ) =
exp
(
u(a,x,θu) + βF(a,x)V̄θ

)
J
∑
j=0

exp
(
u(j,x,θu) + βF(j,x)V̄θ

) ,
where F(a,x) = (p(x1|a,x,θp), . . . ,p(xk|a,x,θp)).
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Two-step GMM estimation
• A problem with the NFXP is its computational cost.

The Bellman equation is solved iteratively in each optimization step.
• The conditional choice probability (CCP) algorithm of Hotz and Miller (1993)

does not require solving the Bellman equation, reducing computational cost
drastically.
• Hotz and Miller notice that, for given values of θu, it is often possible to obtain

estimates v̂(a,Xit,θu) of v̄θ (a,Xit) from preliminary estimates of θp and
P(ait = a|Xit).
• Then, θu can be estimated in a second step by GMM. For example, MLE

maximizes
N
∑
i=1

T
∑
t=1

ln

 exp(v̂(ait,Xit,θu)
J
∑
j=0

exp(v̂(j,Xit,θu)

 .
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Two-step estimation example
• Utility function linear in θu (e.g., polynomial):

u(a,x,θu) = z(a,x)′θu + ε(a).

• Then, it can be shown
v̄θ (a,x) = z̃(a,x,θ)′θu + ẽ(a,x,θ),

where z̃(a,x,θ) and ẽ(a,x,θ) depend on θ only through θp, which can be
estimated in a first step, and P(ait|Xit = x), which can be estimated
non-parametrically.
• Therefore, we can obtain estimates ẑ(a,x) and ê(a,x) of z̃(a,x,θ) and ẽ(a,x,θ),

so v̂(a,x,θu) = ẑ(a,x)′θu + ê(a,x).
• Then, the conditional choice probabilities are approximated as

P(ait = a|Xit = x,θu) =
exp(ẑ(a,x)′θu + ê(a,x))
J
∑
j=0

exp(ẑ(j,x)′θu + ê(j,x))

.

• See Aguirregabiria and Mira (2010) for further details.
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