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Outline

• Supervised machine learning as a first stage estimator in econometrics.

• Two problems that arise using a plugin approach.

• Two solutions - orthogonalized scores and sample splitting.

• How to derive orthogonalized scores.

• Examples.

• Asymptotics.
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Takeaways for this part of class

• Supervised learning can be useful as a first-stage
in econometric estimation problems.

• But simple plug-in estimators are often poorly behaved.

• Well-behaved estimators can be constructed using
1. Orthogonal scores, and

2. Sample splitting and averaging.

• Examples:
1. Partial linear regression.

2. Average treatment effect und unconfoundedness.

3. Local average treatment effect under conditional instrument exogeneity.
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Setup

• Many settings in econometrics:
• The object of interest is low-dimensional (or real-valued),
• but high-dimensional parameters are of intermediate relevance.

• General two stage structure:
1. The high-dimensional g0 is given by the solution

to some supervised learning problem.

2. The low-dimensional parameter of interest θ0 then solves

E[φ(W,θ0,g0)] = 0.

• Can we estimate g0 using supervised machine learning, and plug it in?
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Plugin estimation

• Most obvious estimator of θ0:
1. First estimate g0 using some supervised ML method.

2. Then plug in the estimate and solve for θ̂ in

En
[
φ(Wi, θ̂ , ĝ)

]
= 0.

• This causes two problems, however:
1. Bias of ĝ might distort θ̂0.

2. The statistical dependence of ĝ and Wi might distort θ̂0.

• Both of these issues might cause large biases.

• Let us consider some examples, before solving these problems.
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Example 1: Partially linear regression

• Model:

Y = D ·θ0+g0(X)+U, E[U|X,D] = 0.

• Plugin estimator:
1. Estimate g0, using some supervised ML method.

2. Then solve En[φ(Wi,θ0, ĝ)] = 0, where En is the sample average across
observations Wi, and

φ(W,θ ,g) = (Y−D ·θ −g(X)) ·D,

• Thus
θ̂ = En

[
D2
i

]−1
·En[Di · (Yi−g(Xi))]
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Example 2: Average treatment effect

• Model:

Y = g0(D,X)+U E[U|X,D] = 0
θ0 = E[g0(1,X)−g0(0,X)].

• Under unconfoundedness, θ0 is the average treatment effect.

• Plugin estimator:
1. Estimate g0, using some supervised ML method.

2. Then solve En[φ(Wi,θ0, ĝ)] = 0, where

φ(W,θ ,g) = g(1,X)−g(0,X)−θ .
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Example 3: Local average treatment effect
• Model:

Y = gy
0(Z,X)+U, D= gd

0(Z,X)+V, E[(U,V)|X,Z] = 0,

θ0 =
E[gy

0(1,X)−gy
0(0,X)]

E[gd
0(1,X)−gd

0(0,X)]
.

• Under conditional instrument exogeneity, exclusion restriction, θ0 is the local
average treatment effect.

• Plugin estimator:
1. Estimate g0, using some supervised ML method.

2. Then solve En[φ(Wi,θ0, ĝ)] = 0, where

φ(W,θ ,g) = gy(1,X)−gy(0,X)−
(
gd(1,X)−gd(0,X)

)
·θ .
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Approximating θ̂

• Telescope sum; Taylor approximation;
approximating sample averages by expectations:

0= En
[
φ(Wi, θ̂ , ĝ)

]
= En

[
φ(Wi, θ̂ , ĝ)−φ(Wi, θ̂ ,g0)

]
+En

[
φ(Wi, θ̂ ,g0)−φ(Wi,θ0,g0)

]
+En [φ(Wi,θ0,g0)]

≈ E [∂gφ(Wi,θ0,g0) · (ĝ−g0)]

+E [∂θ φ(Wi,θ0,g0)] · (θ̂ −θ0)+En [φ(Wi,θ0,g0)] .

• Solving for θ̂ −θ0:
(θ̂ −θ0)≈ E [∂θ φ(Wi,θ0,g0)]

−1 ·
[
En [φ(Wi,θ0,g0)]+

+E [∂gφ(Wi,θ0,g0) · (ĝ−g0)]
]

• We can further decompose the last term, which is the cause of bias:
E [∂gφ(Wi,θ0,g0) · (ĝ−g0)]

=E [∂gφ(Wi,θ0,g0)] · (E[ĝ]−g0)+E [∂gφ(Wi,θ0,g0) · (ĝ−E[ĝ])]
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Practice problem
Write out this decomposition for average treatment effect estimation and the plugin
estimator.
1. Recall what is φ and g here.

2. What is ∂θ φ , what is ∂gφ?

3. What do we get for the red and magenta terms?
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Problem 1: Bias in the first stage

• As we discussed previously, ML estimators use regularization, and therefore
are biased: E[ĝ] 6= g0.

• Suppose however that we had a score function which satisfies “Neyman
orthogonality:”

E [∂gφ(Wi,θ0,g0)] = 0.

• Then
E [∂gφ(Wi,θ0,g0)] · (E[ĝ]−g0) = 0.

• ⇒ Bias of ĝ does not matter to first order.
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Problem 2: Statistical dependence of first stage and data

• In general, Wi and ĝ are not statistically independent,
and ĝ has non-negligible variance.

• Therefore E [∂gφ(Wi,θ0,g0) · (ĝ−E[ĝ])] 6= 0.

• Suppose however we used sample splitting:
1. Estimate ĝ on one part of the data.

2. Average φ(Wi, θ̂ , ĝ) over the remaining data.

• Then this term automatically vanishes!
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Debiased Machine Learning
Combining these two ideas: (Definition 3.2 in the paper.)
1. Start with an estimation problem of the form E[φ(W,θ0,g0)] = 0.

2. Derive an orthogonal Neyman score ψ , which satisfies

E[ψ(W,θ0,η0)] = 0,
E [∂ηψ(Wi,θ0,η0)] = 0.

We will discuss next how to do this.

3. Split the sample into K subsamples Ik.
Estimate η̂k based on Ick. Denote En,k the sample average over Ik.

4. Estimate θ by solving
k
∑
k=1

En,k

[
ψ(W, θ̂ , η̂k)

]
= 0.
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How to derive orthogonal scores

• Suppose that
(θ0,β0) = argmax

θ ,β
E[L(W,θ ,β )].

• β takes the role of g here.
We focus on the parametric case for ease of exposition.

• Two approaches to deriving an orthogonal score:
1. Construction from moment functions.

2. Concentrating out.
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Construction from moment functions
• Suppose that

(θ0,β0) = argmax
θ ,β

E[L(W,θ ,β )],

and thus

E[∂θL(W,θ0,β0)] = 0, E[∂βL(W,θ0,β0)] = 0.

• Define
ψ(W,θ ,η) = ∂θL(W,θ ,β )−µ ·∂βL(W,θ ,β ),

where η = (µ,β ), and µ0 solves

∂βE[∂θL(W,θ0,β0)]−µ0 ·∂βE[∂βL(W,θ0,β0)] = 0.

• Then

E[ψ(W,θ0,η0)] = 0,
E [∂ηψ(Wi,θ0,η0)] = 0.
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Construction by concentrating out
• Suppose again that

(θ0,β0) = argmax
θ ,β

E[L(W,θ ,β )].

• Define

β (θ) = argmax
β

E[L(W,θ ,β )],

ψ(W,θ ,η) = ∂θ (L(W,θ ,β (θ)))

= ∂θL(W,θ ,β )+∂θ β (θ) ·∂βL(W,θ ,β ),

where η = (β ,∂θ β (θ)).

• Then, again

E[ψ(W,θ0,η0)] = 0,
E [∂ηψ(Wi,θ0,η0)] = 0.
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Example 1: Partially linear regression

• Recall the model

Y = D ·θ0+g0(X)+U, E[U|X,D] = 0.

• Define
m0(X) = E[D|X].

• Then
ψ(W,θ ,η) = (Y−D ·θ −g(X)) · (D−m(X))

satisfies the orthogonality condition.

• In the first stage, we need to estimate g0(X) and m(X).
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Example 2: Average treatment effect
• Recall the model

Y = g0(D,X)+U E[U|X,D] = 0
θ0 = E[g0(1,X)−g0(0,X)].

• Define
m0(X) = E[D|X].

• Then

ψ(W,θ ,η) =(g(1,X)−g(0,X))+
(

DY
m(X) −

(1−D)Y
1−m(X)

)
−
(

Dg(1,X)
m(X) −

(1−D)g(0,X)
1−m(X)

)
−θ

satisfies the orthogonality condition.

• This is the famous “doubly robust” estimation approach.
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Asymptotics for debiased ML estimators

Theorem 3.3.
• Assume a number of regularity conditions.

• Consider a Debiased Machine Learning estimator.

• Then
√
n(θ̂ −θ)∼A N(0,σ2),

• where
σ

2 = J−1 ·Var(ψ(W,θ0,η0)) ·J−1,

for
J= ∂θE[ψ(W,θ0,η0)].
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Intuition of proof

• Recall our earlier expansion

(θ̂ −θ0)≈ E [∂θ ψ(Wi,θ0,η0)]
−1 ·
[
En [ψ(Wi,θ0,η0)]+

+E [∂ηψ(Wi,θ0,η0) · (η̂−η0)]
]
.

• Using the Debiased Machine Learning approach, we have killed the blue term.

• The other terms give asymptotic normality and the variance by standard
arguments.
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