98 6. Response-Based Sampling

of heart disease in the population can tighten the bounds. A simple way to
do this is to extend Propositions 6.1 and 6.2 to cases in which P(y = 1) is
permitted to vary over a restricted range rather than over the interval [0, 1].
King and Zeng (2002) extend the propositions in this manner and
reconsider the numerical example above when P(y = 1} is permitted to vary
over the range [0.05, 0.15]. Under the assumption that P(y = 1) lies in this
interval, they find that RR ¢ {1.46, 1.53] and AR € [0.021, 0.056].

Sampling from One Response Stratum

Suppose that one has a random sample of ill persons but not of healthy
ones, so P(x | y= 1) is known but not P(x | y=10). Consider Propositions 6.3
and 6.4 in this setting.

First, suppose that the outcome distribution is known. By Proposition
6.3, P(y=1|x=k) €[0.06, 11, P(y=1|x=}) € [0.04, 1], RR € [0.06, 23.5],
and AR € [-0.94, 0.96]. Thus, knowing the marginal probability of heart
disease has little identifying power in this example.

Now, suppose that the covariate distribution is known. The parameters
of the example give ¢ = 0.83, so Proposition 6.4 yields P(y = 1 |x =k)e
[0, 1]and P(y=1]|x=j) € [0, 0.67]. The quantity d = 0.4, so AR € [0,0.33].
Thus, knowing the prevalence of smoking in the population reveals little
about the magnitudes of the response probabilities but reveals a fair bit
about attributable risk and poini-identifies relative risk.

Endnotes

Sources and Historical Notes

The analysis in Sections 6.4 and 6.5 originally appeared in Manski (1995,
2001). In particular, Propositions 6.1 and 6.2 are based on Manski (1995,
Chapter 4), and Propositions 6.3 and 6.4 on Manski (2001, Propositions 3
and 4). Manski and Lerman (1977) recommended collection of auxiliary
outcome data to learn P(y). Hsieh, Manski, and McFadden (1985) showed
that auxiliary covariate data can enable deduction of P(y).

Cornfield (1951) showed that the rare-disease assumption point-
identifies refative risk. The lack of relevance of relative risk to public health
has long been criticized; see, for example, Berkson (1958), Fleiss (1981,
Section 6.3), and Hsieh, Manski, and McFadden (1985).

The term reverse regression has been used in the literature on mean
regression to denote the conditional expectation E(x|y), when the condi-
tional expectation of interest is E(y|x); see Goldberger (1984).

7

Analysis of Treatment Response

7.1. Anatomy of the Problem

The four remaining chapters of this book study a pervasive and distinctive
problem of missing outcomes. The problem is the non-observability of
counterfactual outcomes in empirical analysis of treatment response.

Studies of treatment response aim to predict the outcomes that would
occur if different treatment rules were applied to a population. Treatments
are mutually exclusive, so one cannot observe the outcomes that a person
would experience under all treatments. At most, one can observe the
outcome that a person experiences under the treatment actually received.
The counterfactual outcomes that a person would have experienced under
other treatments are logically unobservable.

For example, suppose that patients ill with a specified disease can be
treated by drugs or by surgery. The relevant outcome might be life span.
One may want to predict the life spans that would occur if patients with
specified risk factors were to receive each treatment. The available data may
be observations of the actual life spans of these patients, some of whom
were treated by drugs and the rest by surgery.

Predicting Outcomes Under Conjectural Treatment Rules

To formalize the inferential problem, let each member j of population J
have covariates x; € X and a response fimction y(-). T - Y mapping the
mutually exclusive and exhaustive treatments t ¢ T info outcomes y,(t) € Y.
Let z; € T denote the treatment that person j receives and y; = y(z) be the
outcome that he experiences. Then y|(t), t # 7 are counterfactual outcomes.

99
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Let y(): J -+ Y'T be the random variable mapping the population into
their response functions. Let z: J ~ T be the status quo treatment rule
mapping the members of J into the treatments that they actually receive.
Response functions are not observable, but covariates, realized treatments,
and realized outcomes may be observable. If so, random sampling from J
reveals the status quo (ouicome, treatment) distributions P(y, z|x) as well as
the covariate distribution P(x).

The distinctive problem of the analysis of treatment response is to
predict the outcomes that would occur under alternatives to the status quo
treatment rule. Let 7:J - T be a conjectural treatment rule, the outcomes
of which one would like to predict. Thus, person j’s outcome under rule 7
would be y,(t;). This outcome is counterfactual whenever T; » 7. Hence, the
sampling process does not reveal the conjectural outconie distributions
P[y(7)|x]. The problem is to combine empirical knowledge of P(y, z| x) with
credible prior information to learn about Pfy(7){x].

To simplify the presentation, the analysis in this chapter supposes that
the covariate space X is finite and that P(x =x,z=1) > 0, (t, x) e T x X.
These regularity conditions are maintained without further reference.

The Selection Problem

Researchers studying treatment response often want to predict the outcomes
that would occur under conjectural treatment rules in which all persons with
the same covariates receive the same treatment. Consider, for example, the
medical setting described earlier. Let the relevant covariate be age. Then
one treatment rule might mandate that all patients receive drugs, another
that all patients receive surgery, and yet another that older patients receive
drugs and younger ones receive surgery.

By definition, P[y(t)|x = x] is the distribution of outcomes that would
occur if all persons with covariate value x were to receive a specified
treatment t. Hence prediction of outcomes under rules mandating uniform
treatment conditional on covariates requires inference on the distributions
{P[¥(t)|x], t € T}. The problem of identification of these distributions from
knowledge of P(y, z|x) is commonly called the selection problem.

The selection problem has the same structure as the missing-outcomes
problem of Chapter 1 and Section 3.2. To see this, write

Pp®|x=x]

= Ply()|x=x, z=t]P(z=t|x =x) + P[I(t)|x = x, z # t]P(z # t|x =)

Pylx=x,z=tPE=tix=x)+P()jx=x,z 2 tIP(z # t|x=x). (7.1)
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The first equality is the Law of Total Probability. The second holds because
Wt} is the outcome experienced by persons who receive treatment t. The
sampling process reveals P(y|x=x, z=t), P(z=t|x = x), and P(z # t|x =X),
but it is uninformative about P{y(t)|x = x, z = t]. Hence, the identification
region for P[){t)|x = x] using the empirical evidence alone is

H{Pp(®)[x=x]} =
{POlx=%z=0PE=tlx=x)+yPz # t|lx=x),y e ['}}. (7.2)

Now, consider the collection of conjectural outcome distributions
{PD(t)|x], t € T}. The sampling process is jointly uninformative about the
counterfactual outcome distributions {P[y(t)|x =x,z # t}, t € T, x € X},
which can take any value in ¥ ¢ , 1. x I'y. Hence the identification region
for {P[y(t)|x], t € T} using the empirical evidence alone is the Cartesian
product

H{PpOIx], te T} = % @ yerox HPHO]x=x]}. (7.3)

Observe that the empirical evidence cannot refute the hypothesis that all
treatments have the same outcome distribution, conditional on x. Consider
the hypothesis: P[»(t)|x] = P[y(t"}|x], all (t, t') € T x T. Identification
region (7.3) necessarily contains distributions that satisfy this hypothesis.
The easiest way to see this is to observe that the empirical evidence cannot
refute the much stronger hypothesis {y(t) =y;, all (t, j) € T x J}; that is,
each person’s counterfactual outcomes could in principle be the same as the
outcome that he actually experiences.

Random Treatment Selection

A familiar “solution” to the selection problem is to assume that the status
quo ireatment rule makes realized treatments statistically independent of
response functions, conditional on x; that is,

PR()|x] = PDC)|x, 2] (7.4)
This assumption implies that, foreacht € Tand x € X,
Pt)|x=x] = Ppt)|x =x,z=1t] = P(y|x=x,z=t). (7.5)

The sampling process reveals P(y|x = x, z = t). Hence, assumption (7.4)
point-identifies P[y(t}\x = x].
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Assumption 7.4 is credible in a classical randomized experiment, in
which an explicit randomization mechanism has been used to assign
treatments and all persons comply with their treatment assignments. The
credibility of the assumption in other applied settings almost invariably is
a matter of controversy.

The Task Ahead

This opening section introduced the general problem of predicting outcomes
under conjectural freatment rules and then examined basic elements of the
selection problem. The remainder of this chapter uses a social-planning
problem to motivate rules mandating uniform treatment conditional on
covatiates and to show how the selection problem affects treatment choice.
Chapters 8 and 9 study the identifying power of some monotonicity
assumptions that may be credible and useful in the analysis of treatment
response. Chapter 10 studies the mixing problem; that is, the problem of
predicting outcomes under conjectural treatment rules that do not mandate.
uniform treatment conditional on covariates.

7.2. Treatment Choice in Heterogeneous Populations

An important practical objective of empirical studies of treatment response
is to provide decision makers with information useful in choosing treat-
ments. Often the decision maker is a planner who must choose treatments
for a heterogeneous treatment population. The planner may want to choose
treatments whose outcomes maximize the welfare of the treatment
population.

For example, consider a physician choosing medical treatments for a
population of patients. The physician may observe each patient’s demo-
graphic attributes, medical history, and the results of diagnostic tests. He
may then choose a treatment rule that makes treatment a function of these
covariates. If the physician acts on behalf of his patients, the outcome of
interest may be a measure of patient health status and welfare may be this
measure of health status minus the cost of treatment, measured in compara-
ble units.

As another example, consider a judge choosing sentences for a popula-
tion of convicted offenders. The judge may observe each offender’s past
criminal record, demeanor in court, and other attributes. Subject to
legislated sentencing guidelines, she may consider these covariates when
choosing sentences. If the judge acts on behalf of society, the outcome of
interest may be a measure of recidivism, and welfare may be this measure
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of recidivism minus the cost of carrying out a sentence.

I present here a simple formulation of the planner’s problem that
motivates inference on the outcome distributions {P[(t)|x], t € T} in
general and the conditional mean outcomes {E[y(t)|x], t ¢ T} in particular,
I first specify the planner’s choice set and objective function. I then derive
the optimal treatment rule.

The Choice Set

suppose that there is a finite set T of mutually exclusive and exhaustive
treatments. A planner must choose a treatment for each member of the
treatment population, denoted J'. Each member j of population J” has
observable covariates x; € X and an unobservable response function vi():
T - Y mapping treatments into real-valued outcomes,

The treatment population I is identical in distribution to the study
population J, in which treatments have already been selected and outcomes
have been realized. Thus (J', Q, P) is a probability space whose probability
measure P coincides with that of (J, Q, P). The only difference between J
and J' is that the status quo treatment rule z has been applied in the former
population, whereas a treatment rule has yet to be chosen in the latter.

There are no budgetary or other constraints that make it infeasible to
choose some treatment rules. However, the planner cannot distinguish
among persons with the same observed covariates and so cannot implement
treatment rules that systematically differentiate among these persons.
Hence, the feasible non-randomized rules are functions mapping the
observed covariates into treatments.' Thus, uniform treatment conditional
on covariates emerges naturally out of the planner’s problem.

Formally, let Z(X) be the space of all functions mapping X into T. Let
z(*) € Z(X). Then feasible treatment rules have the form T,=2x), JET ",

The Objective Function

Suppose that the planner wants to maximize population mean welfare. Let
the welfare obtained from assigning treatment t to person j have the additive
form y(t} + c(t, x;). Here c(*, -): T x X - R is a real-valued cost function
known to the planner at the time of treatment choice. For each z(*) € Z(X),
let E{y[z{x)] + c[z(x), x]} denote the mean welfare that would occur if the
planner were to choose treatment rule z(). Then the planner wants to solve
the problem

max  E{y|z(x)] + c[z(x), x]}. (7.6
('} € Z(X)
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In the case of a physician, for example, y,(t) may measure the health
status of patient j following receipt of treatment t, and c(t, X;) may be the
(negative-valued) cost of treatment. The physician may know the costs of
alternative treatments but not their health outcomes. Similarly, in the case
of a judge, y;(t) may measure the rate of recidivism of offender j following
receipt of sentence i, and c(t, X;) may be the cost of carrying out the
sentence. Again, the judge may know the costs of alternative sentences but
not their recidivism outcomes.

The assumption that the planner wants to maximize population mean
welfare has normative, analytical, and practical appeal. This criterion
function is standard in the public economics literature on social planning,
which assumes that the objective is to maximize a utilitarian social welfare
function. Linearity of the expectation operator yields substantial analytical
simplifications, particularly through use of the law of iterated expectations.
The practical appeal is that, as shown below, a planner choosing treatments
to maximize mean welfare will want to learn mean treatment response, the
main statistic reported in empirical studies of treatment response.

The Optimal Treatment Rule

The solution to optimization problem (7.6) is to assign to each member of
the population a treatment that maximizes mean welfare conditional on the
person’s observed covariates. To show this, Iet 1[-] be the indicator function
taking the value one if the logical condition in the brackets holds and the
value zero otherwise. For each z(*) € Z(X), use the Law of Iterated
Expectations to write

E{y[z(x)] + e[z(x), x]} = E{E{[z(x)] + e[z(x), x] | x} }
= Yxex PG={Y (cr {EIHO | ] +o(t, D} 1z0)=€]}. (7.7

For each x € X, the quantity ¥, . {E[(t)|x = x] + c(t, x)}-1[z(x) = t] is
maximized by choosing z(x) to maximize E[y(t)|x] + c(t, x) on t ¢ T.
Hence, a treatment rule z'(") is optimal if, for each x € X, z'(x) solves the
problem

max , . E[y(t)|x =x] + c(t, x). (7.8)

A planner who knows the conditional mean outcomes E[y(") [x] =
{E[p(®)|x =x], t € T, x € X} can implement the optimal treatment rule.
However, the selection problem and other identification problems limit the
information that studies of treatment response provide. Sections 7.3 and 7.4
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show how the selection problem affects treatment choice. Complements 7A
and 7C consider the implications of other identification problems.

7.3. The Selection Problem and Treatment Choice

Let Y contain its lower and upper bounds y, = inf .y and y, = sup .. For
t ¢ T and x € X, use the Law of Iterated Expectations to write

Ep(t)|x=x] =
E@lx=xz=t)PE=t|x=x) +EQt) |x=x,z# ] P+ t|x=x). (7.9)

The empirical evidence reveals E(v|x =X, z = t) and P(z|x = x), but it is
uninformative about E[3(t) | x =X, z#t]. Hence, the identification region for
E(t) lx = x] using the empirical evidence alone is the closed interval

B{ED(®) |x=x]}

= [E(y|x=x,z=t)-P(z=t|x=x)+y0-P(z#t!x=x),
E@|x=x,z=0Pz=tlx=x)+y,PE+t|x=x)]. (7.10)

This result is a direct application of Proposition 1.1,
The object of interest is the collection of conditional mean outcomes
E[v(") | x]. Its identification region H{E[y("}| x1} is the rectangle

H{BE[y()|«T}

= X g geTxX [E(y|x=x,z=t)'P(z=t|gc=x)+yU-P(z#t|x=x),
E(|x=xz=0Pz=t|x=x)+y,PE+t{x=x)]. (7.11)

This is the identification region because the empirical evidence is uninfor-
mative about the set of counterfactual means {Efy(f)|x=x, z# 1], (t, x) €
T x X},

H{ii[y(j | %]} is a bounded, proper subset of (Y!"! x X) if Y has bounded
range. Suppose that this is so. Then, without loss of generality, outcomes
may be scaled to take values in the unit interval. Setting y,= 0 and y, =1
gives H{E[y(") | x]} the simpler form



106 7. Analysis of Treatment Response

HERO |11} = % yerax [B@|x=x,z=1)}P=t|x=x),
E(y|x=x,z=t)Pz=tlx=x) + Pz # t|x =x)].
(7.12)

The analysis in'the remainder of this chapter assumes that Y has bounded
range and that outcomes have been scaled to lie in the unit interval. Thus
(7.12) henceforth gives the identification region for E[y(*) lx] using the
empirical evidence alone.

Dominated Treatment Rules

In general, the empirical evidence alone is not sufficiently informative
about E[y(") ix] to enable solution of optimization problem (7.8). What
should the planner do? :

Clearly, the planner should not choose a dominated treatment rule. (A
treatment rule z(*) is dominated if there exists another feasible rule, say
z'(:), that necessarily yields at least the mean welfare of z(*) and that
performs strictly better than z(*) in some possible state of nature.) The
rectangular form of H{E[(*) | x]} makes it easy to determine what treatment
rules are dominated.

Let (t, x) € T x X, and consider any rule that assigns treatment t to
persons with covariate value x. By (7.12), the mean welfare yielded by this
treatment choice can take any value in the interval

[E(y|x=x,zxt)-P(z=t|x:x) + cft, x),
E(y[x:x,z:t)-P(z:t|x:X) + Pz#t|x=x) + cft, x)].

The mean welfare of another treatment choice, say t’, can take any value in
the interval

[E(y|x =x,z=tyPz=t |x =x) + oft, x),
E(y[x=x,z:t')-P(z=t’]x:x) + P+t |x=x) +ct’, x)].

Treatment t is definitely inferior to t' if the upper bound of the former
interval is no larger than the lower bound of the latter one. This gives
Proposition 7.1.

Proposition 7.1: Let (t, x) € T x X. Using the empirical evidence alone, a
treatment rule that assigns treatment t to persons with covariates x is
dominated if and only if there exists a treatment t’ € T such that
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E(y|x=x,z=t)Pz=t|x=x) Pz#t|x=x) +c(t, x)

< Blylx=%z=t)Pl=t|x=x) Fo(t',x). (7.13)

O

The special case in which all treatments have the same cost is notewor-
thy. Then there generically are no dominated treatments. To see this, let
¢(t, x} = c(t’, x) for all treatments t and t'. Then inequality (7.13) reduces to

E(ylx:x,z_:t)-P(z:ﬂx=x)+P(z%t|x=X)
< E(ij:x,z=t’)-P(z:t’|x=x).

Observe that Pz # t|x=x) » Pz=t'|x=x), E(r|x=x,z=6) €0, 1], and
E(y |x =X, z=1') € [0, 1]. Hence, this inequality can never hold strictly.
Moreover, it holds weakly only when P(z # t|x =x)=P@z=t Ix = X),
E@|x=x,z=1)=0,and E(y|x=x,z=t") = 1.

Choice Among Undominated Treatments

The fact that the empirical evidence does not enable determination of the
optimal treatment rule does not imply that a planner should be paralyzed,
unwilling and unable to choose a rule. It implies only that the planner
cannot assert optimality for whatever rule he does choose.

The planner could, for example, reasonably apply the maximin rule,
which calls for persons with covariates x to be assigned the treatment that
maximizes the lower bound on E[y(*) | x = x]. By (7.12), the maximin rule
solves the problem

max ¢ E(|x=x, z=t)Pz =t|x=x) +c(t, x). (7.14)

This rule is simple to apply and to comprehend. From the maximin
perspective, the desirability of treatment t increases with E(y |x =%,z=1),
the mean outcome experienced by persons who received this treatment, and
with P(z=1 | x = x)}, the fraction of persons who received treatment t. The
second factor gives form to the conservatism of the maximin rule—the more
prevalent a ireatment was in the study population, the more expedient it is
to choose this treatment in the treatment population.
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7.4. Instrumental Variables

Section 7.3 considered a planner who confronts the selection problem using
the empirical evidence alone. Credible distributional assumptions may
enable the planner to shrink the identification region for E[y(-) | x] and hence
shrink the set of undominated treatment rules. Many distributional
assumptions make use of insirumental variabies.

Treatment-Specific Assumptions

The selection problem is a matter of missing outcome data, so all of the
analysis of Chapter 2 may be brought to bear. Thus, suppose that person j
is characterized by an obscrvable covariate v; in a finite space V. Let
Py, z, x, v} denote the joint distribution of (y, 2, x, v). The covariate v
serving as an instrumental variable need not be distinct from the covariate
x used to make treatment choices, but it simplifies analysis if v contains
information not conveyed by x. Hence, the presentation here assumes that
P(v=v,z=t{x) > Oforall (v,t) e VXT.

Lett € T and x € X. To help identify E[¥(t)|x = x], a planner could
impose any of the distributional assumptions studied in Chapter 2. This
section shows how Assumptions MAR, SI, MMAR, and MI may be applied
to the analysis of treatment response. Assumptions MM and MMM will be
considered separately in Chapter 9.

In the context of treatment response, Assumptions MAR, SI, MMAR,
and MI are as follows.

Outcomes Missing-at-Random (Assumption MAR):

Pp®x=x,v] = PUO)|x=x,v,z=t] = Pyt)|x=x,v,z#t]. (7.15)

Statistical Independence of Outcomes and Instruments (Assumption SI):
Phy(®)|x=x,v] = PB(t)|x=x]. (7.16)

Means Missing-at-Random (Assumption MMAR):

Ey®x=x,v] = Ex®|x=x,v,z=1t] = El|x=x, v,z #t]. (7.17)

Mean Independence of Outcomes and Instruments (Assumption MI):

Elp(t)|x=x,v] = E[y{®)|x=x]. (7.18)
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These assumptions restrict the distribution of outcomes under a specified
treatment t for persons with specified covariates x. A planner can consider
each value of (1, x) in turn and decide what assumption to assert.

Assumptions MAR and MMAR point-identify E[y(t){x = x]. The other
assumptions generally do not yield point identification but do shrink the
identification region. Propositions 7.2 through 7.5 give the results. These
propositions are immediate extensions of corresponding ones in Chapter 2,
s0 proofs are omitted.

Proposition 7.2: Let assumption MAR hold. Then P{y(t}|x = x] is point-
identified with

Plv)x=x] = ¥ v POlx=x,v=v,z=)P(v=v [x=x). (7.19)
i}

Proposition 7.3: Let assumption ST hold. Then the identification region for

Ply(tyx=x]is

H {Pp®)|x=x]} = N {PEix=x,v=v,z=0Pz=t|x=x%,v=")
vev
+y Pz #tlx=x,v=v), v,€Ty}. (7.20)
(I

Proposition 7.4: Let assumption MMAR hold. Then E[y(t)!x = x] is point-
identified with

Ep®lx=x] = Y, v BE@|x=x,v=v,z=t)P(v=v|x=x). (7.21)
(1

Proposition 7.5: Let assumption MI hold. Then the identification region for
E[y(t)|x = x] is the closed interval

Hy (Ep(®}x=x]} = [max,  B{yrllz=tljx=x,v=v},

min, .y E{yrl{z=t]+ 1z 2 tllx=x,v=v}]. (7.22)
]

Statistical Independence of Response Functions and Instruments

Whereas the assumptions considered above are treatment-specific, one
could instead have information that restricts the joint distribution of the
response function y(*). An especially prominent assumption is
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Statistical Independence of Response Functions and Instruments (Assump-
tion SI-RF):

POl =x91 = P() x=xI. (7.23)

Assumption SI-RF strengthens assumption SI. The latter assumption, when
applied to all treatments, asserts that each component [1(i), t ¢ T] of the
outcome vector y(°) is statistically independent of v. Assumption SI-RF
asserts that (1), t € T] are jointly independent of v.

The prominence of assumption SI-RF derives from its credibility when
the study population are subjects in a randomized experiment. In a
randomized experiment, the instrumental variable v designates the treatment
group in which each subject has been placed; thus V = T. Randomization
implies that (") is statistically independent of the designated treatment v, so
assumption SI-RF holds.

The classical theory of randomized experiments assumes that all subjects
comply with their designated treatments; that is, z = v. In this special case,
application of Proposition 7.3 to each treatment t shows that P[3(t){x = x]
is point-identified, with

Hy{P(®)|x=x]} = Pylx=x,z=1). (7.24)

This finding only uses assumption SI; it does not require the full force of
assumption SI-RF.

When some subjects do not comply, randomization of designated
treatments generally does not point-identify P[(t)|x = x]. In this case,
assumption SI-RF may have identifying power beyond that obtained when
assumption SLis applied to all treatments. However, the form of identifica-
tion regions under assumption SI-RF is largely an open question.

Complement 7A. Identification and Ambiguity

The treatment-choice problem examined in this chapter is an instance of
choice under ambiguity. In general, a decision maker with a known choice
set who wants to maximize an unknown objective function is said to face
a problem of choice under ambignity. A commeon source of ambiguity is
partial knowledge of a probability distribution describing a relevant
population—the decision maker may know only that the distribution of
interest is a member of some set of distributions. This is the generic
situation of a decision maker who seeks to learn a population distribution
empirically, but whose data and other information do not point identify the
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distribution. Thus, identification problems in empirical analysis generate
problems of choice under ambiguity.

The term ambiguity appears to originate in Ellsberg (1961), which posed
thought experiments in which subjects were asked to draw a ball from either
of two urns, one with a known distribution of colots and the other with an
unknown distribution of colors. Keynes (1921) and Knight (1921) used the
term uncertainty, but uncertainty has since come to be used to describe
optimization problems in which the objective function depends on a known
probability distribution.

Dominated Treatment Rules

Manski (2000) shows that the social planner of Section 7.2 faces a problem
of treatment choice under ambiguity whenever identification problems
prevent the planner from knowing enough about mean treatment response
to be able to determine the optimal rule.

Considering the matter in abstraction, suppose that a planner learns from
the available studies that E[y(") | x] lies in some identification region
H{ED() |x]}. This information may not suffice to solve problem (7.8) but
may suffice to determine that some treatment rules are dominated.

A feasible treatment rule z(-) is dominated if there exists another feagible
rule, say z'(*), that necessarily yields at least the social welfare of z{-) and
that performs strictly better than z(-) in some possible state of nature. Thus
z(*) € Z(X) is dominated if there exists a z'(-) € Z(X) such that

L eex PG= Y (o7 [0t %) + ot, )] Hz(x) = ]}

< Vrex Pe=x{Y (or [nt 2) + o(t, ) 1[2'() = 1]}
for all n ¢ H{E[y(}|x]} and
L xex PE=XHY 1or [N %)+ o(t, 0] 1[z(x) = t]}

< LaexPE=X){Y (o1 [N(L x) + ot )] 1z () = t]}
for some 1 € H{E[3(") | ]}, where n(t, x) is a feasible value of E[y(t}|x].

Choice Among Undominated Rules

The central difficulty of choice under ambiguity is that there is no clearly
best way to choose among undominated actions. Two common suggestions
are application of the maximin rule or a Bayes decision rule.
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A plannerusing the maximin rule selects a treatment rule that maximizes
the minimum mean welfare attainable under all possible states of nature.
This means solution of the optimization problem

max min Yo POo=xMY or [N, %) + clt, )] 1[z(x) = 1]},
2L’ (X} e H{E()|x]}

where Z'(X) denotes the set of undominated treatment rules.

Bayesian decision theorists recommend that a decision maker facing
ambiguity place a subjective distribution on the states of nature and
maximize expected welfare with respect to this distribution. In the treatment
choice context, the planner would place a probability measure T on the set
H{EL() |x]}, where 7 expresses the decision maker’s personal beliefs
about where E[1(*) | x| may lie within H{E[y(-) | x]}. The planner would then
solve the optimization problem

max [ ¥ ex Pa=x){) v [ x) + et )] 1[z0) =11} dr.
) e Z'X)

The maximin rule and Bayes rules are reasonable ways to make
decisions under ambiguity, but there is no optimal way to behave in the
absence of credible information on the location of E[y(") |x] within
H{E[»()|x]}. Wald (1950), who proposed and studied the maximin rule,
did not contend that the rule is optimal, only that it is reasonable. Consider-
ing the case in which the objective is to minimize rather than maximize an
objective function, he wrote (Wald, 1950, p.18): “a minimax solution
seems, in general, to be a reasonable solution of the decision problem.”

Bayesians often present procedural rationality arguments for use of
Bayes decision rules. Savage (1954) showed that a decision maker whose
choices are consistent with a certain set of axioms can be interpreted as
using a Bayes rule. Many decision theorists consider the Savage axioms, or
other sets of axioms, to be a priori appealing. Acting in a manner that is
consistent with these axioms does not, however, imply that chosen actions
yield good outcomes. Berger (1985, p. 121) calls attention to this, stating:
“A Bayesian analysis may be ‘rational” in the weak axiomatic sense, yet be
terrible in a practical sense if an inappropriate prior distribution is used.”

Complement 7B: Sentencing and Recidivism

The question of how judges should sentence convicted juvenile offenders
has long been of inierest to policy makers and criminologists. Manski and
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Nagin (1998) analyzed data on the sentencing of 13,197 juvenile offenders
in Utah and their subsequent recidivism. We compared recidivism under the
two main sentencing options available to judges: confinement in residential
facilities (t = 1) and sentences that do not involve confinement (t = 0).

Let the outcome take the value y = 1 if an offender is convicted of a
subsequent crime in the two-year period following sentencing, and the value
¥y = 0 otherwise. The empirical distribution of treatments and outcomes
among the observed offenders was found to be as follows:

residential treatment: P(z=1)=0.11,
recidivism given residential treatment: P(y =1 !z =1)=0.77,
recidivism given nonresidential treatment: P(y = 1 |z =0)= 0.59,

The problem is to use this empirical evidence to draw conclusions about the

response probabilities P[y(1) = 1] and Pp(0) = 1].
The empirical evidence alone reveals that

Ply(1)=1] € [0.08, 0.97] Ply(0)=1] € [0.53, 0.64].
If one assumes that judges sentence offenders randomly, then
Ply(1)=1}1=0.77 P =11=0.59.

Random sentencing did not seem a credible assumption, so we considered
two alternative models of treatment selection. The outcome optimization
model assumes that judges aim to minimize the chance of recidivism. The
empirical evidence plus this assumption can be shown to imply that

Ply(1)=1] € [0.61, 0.97] Ply(0)=1] ¢ [0.61, 0.64].
The skimming model assumes that judges classify offenders as “higher risk”
or “lower risk,” sentencing only the former to residential confinement. The
empirical evidence plus this assumption can be shown to imply that

Pip(1) = 1] ¢ [0.08, 0.77] P[(0) = 1] € [0.59, 0.64].

Thus, conclusions about response to treatment depend critically on the
assumptions imposed. J



