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NOTES AND COMMENTS

IDENTIFICATION AND ESTIMATION OF TREATMENT EFFECTS
WITH A REGRESSION-DISCONTINUITY DESIGN

BY JINYONG HAHN, PETRA TODD, AND WILBERT VAN DER KLAAUW1

1. INTRODUCTION

Ž .THE REGRESSION DISCONTINUITY RD data design is a quasi-experimental design with the
defining characteristic that the probability of receiving treatment changes discontinuously
as a function of one or more underlying variables. This data design arises frequently in
economic and other applications but is only infrequently exploited as a source of
identifying information in evaluating effects of a treatment.

In the first application and discussion of the RD method, Thistlethwaite and Campbell
Ž .1960 study the effect of student scholarships on career aspirations, using the fact that
awards are only made if a test score exceeds a threshold. More recently, Van der Klaauw
Ž .1997 estimates the effect of financial aid offers on students’ decisions to attend a
particular college, taking into account administrative rules that set the aid amount partly
on the basis of a discontinuous function of the students’ grade point average and SAT

Ž .score. Angrist and Lavy 1999 estimate the effect of class size on student test scores,
taking advantage of a rule stipulating that another classroom be added when the average

Ž .class size exceeds a threshold level. Finally, Black 1999 uses an RD approach to
estimate parents’ willingness to pay for higher quality schools by comparing housing
prices near geographic school attendance boundaries. Regression discontinuity methods
have potentially broad applicability in economic research, because geographic boundaries
or rules governing programs often create discontinuities in the treatment assignment
mechanism that can be exploited under the method.

Although there have been several discussions and applications of RD methods in the
literature, important questions still remain concerning sources of identification and ways
of estimating treatment effects under minimal parametric restrictions. Here, we show
that identifying conditions invoked in previous applications of RD methods are often
overly strong and that treatment effects can be nonparametrically identified under an RD
design by a weak functional form restriction. The restriction is unusual in that it requires
imposing continuity assumptions in order to take advantage of the known discontinuity in
the treatment assignment mechanism. We also propose a way of nonparametrically
estimating treatment effects and offer an interpretation of the Wald estimator as an RD
estimator.

1 We would like to thank Joshua Angrist, James Heckman, Guido Imbens, Alan Krueger, Tony
Lancaster, Sendhil Mullainathan, and Ken Wolpin for helpful comments. The paper has also
benefited from comments received at the 1997 Midwestern Econometrics Group conference, the
1997 AEA meetings, the 1998 Econometric Society Summer Meetings in Montreal, the University of
Michigan, the University of Rochester, the University of Wisconsin, the joint Harvard!MIT
econometrics workshop, and the joint Brown-Yale-NYU-Penn-JHU labor conference. Van der
Klaauw thanks the C. V. Starr Center of Applied Economics at NYU for research support. Todd is
grateful to the NSF for support under !SBR-9730688.
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2. REGRESSION-DISCONTINUITY DESIGN AND SOURCES OF IDENTIFICATION

The goal of an evaluation is to determine the effect that some binary treatment
variable x has on an outcome y . The evaluation problem arises because persons eitheri i
receive or do not receive treatment and no individual is observed in both states at the
same time. Let y denote the outcome with treatment and y that in the absence of1i 0 i
treatment, and let x "1 if treatment is received and x "0 otherwise. The model for thei i
observed outcome can be written as y "" #x #$ , where " !y , $ !y $y .i i i i i 0 i i 1 i 0 i

There are two main types of discontinuity designs considered in the literature%the
sharp design and the so-called fuzzy design.2 With a sharp design, treatment x is knowni

Ž .to depend in a deterministic way on some observable variable z , x " f z , where zi i i i
Ž .takes on a continuum of values and the point z , where the function f z is discontinu-0

ous, is assumed to be known. With a fuzzy design, x is a random variable given z , buti i
Ž . % & % &the conditional probability f z !E x 'z "z "Pr x "1'z "z is known to be discon-i i i i

tinuous at z . The fuzzy design differs from the sharp design in that the treatment0
assignment is not a deterministic function of z ; there are additional variables unob-i
served by the econometrician that determine assignment to treatment. The common
feature it shares with the sharp design is that the probability of receiving treatment,

% &Pr x "1'z , viewed as a function of z , is discontinuous at z :i i i 0

Ž . Ž . # % & $ %# $ASSUMPTION RD : i The limits x ! lim E x 'z "z and x ! lim E x 'z "z! z i i z ! z i i0 0& 3 Ž . # $z exist. ii x "x .

Below, we focus on identification under the fuzzy design treating the sharp design as a
special case.

2.1. Constant Treatment Effects

Suppose that the treatment effect $ is constant across different individuals. Let e#0
denote an arbitrary small number. Suppose that we have a reason to believe that in the
absence of treatment, persons close to the threshold z are similar. We would then0

% & % &expect E " 'z "z #e (E " 'z "z $e , which motivates the assumption:i i 0 i i 0

Ž . % &ASSUMPTION A1 : E " 'z "z is continuous in z at z .i i 0

Below, we establish that $ is nonparametrically identified solely under this continuity
restriction:

Ž .THEOREM 1: Suppose that $ is fixed at $. Further suppose that Assumptions RD andi
Ž .A1 hold. We then ha)e

y#$y$
Ž .1 $" ,# $x $x

# % & $ % &# $where y ! lim E y 'z "z and y ! lim E y 'z "z .z! z i i z ! z i i0 0

2 Ž .See Trochim 1984 .
3 Throughout this paper, we also assume that the density of z is positive in the neighborhoodi

containing z .0
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PROOF: The mean difference in outcomes for persons above and below the discontinu-
ity point is

% & % &E y 'z "z #e $E y 'z "z $ei i 0 i i 0

" % & % &4"$# E x 'z "z #e $E x 'z "z $ei i 0 i i 0

" % & % &4# E " 'z "z #e $E " 'z "z $e .i i 0 i i 0

Ž .Under A1 , we have

% & % &lim E y 'z "z $ lim E y 'z "zi i i i# $z!z z!z0 0

% & % &"$# lim E x 'z "z $ lim E x 'z "z ,i i i i½ 5# $z!z z!z0 0

Ž .from which the conclusion follows. The denominator in 1 is nonzero by Assumption
Ž .RD . Q.E.D.

With the sharp design, x#"1 and x$"0 by definition. Therefore, $ is identified by

Ž . # $2 $"y $y .

2.2. Variable Treatment Effects

Now we consider the question of identification when treatment effects are heteroge-
neous. To generalize the identification strategy in the constant treatment effect case, we
make the following assumption:

Ž . % &ASSUMPTION A2 : E $ 'z "z , regarded as a function of z, is continuous at z .i i 0

% &We establish that the average treatment effect at z , E $ 'z "z , is nonparametri-0 i i 0
cally identified under the functional form restriction and a weak form of conditional
independence:

THEOREM 2: Suppose that x is independent of $ conditional on z near z . Furtheri i i 0
Ž . Ž . Ž .suppose that Assumptions RD , A1 , and A2 hold. We then ha)e

y#$y$
Ž . % &3 E $ 'z "z " .i i 0 # $x $x

PROOF: The mean difference in outcomes for persons above and below the discontinu-
ity point is

% & % &E y 'z "z #e $E y 'z "z $ei i 0 i i 0

" % & % &4" E x #$ 'z "z #e $E x #$ 'z "z $ei i i 0 i i i 0

" % & % &4# E " 'z "z #e $E " 'z "z $e .i i 0 i i 0

By conditional independence, we have

% & % & % &E x #$ 'z "z$e "E $ 'z "z$e #E x 'z "z$e .i i i i i i i
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Ž . Ž .Combined with A1 and A2 , we obtain
% & % &lim E y 'z "z $ lim E y 'z "zi i i i# $z!z z!z0 0

% & % & % &"E $ 'z "z # lim E x 'z "z $ lim E x 'z "z ,i i 0 i i i i½ 5# $z!z z!z0 0

from which the conclusion follows. Q.E.D.

% &With a sharp design, E $ 'z "z is identified byi i 0

Ž . % & # $4 E $ 'z "z "y $y .i i 0

The conditional independence assumption maintains that individuals do not select into
treatment on the basis of anticipated gains from treatment. Although such assumptions
are routinely invoked in the literature on matching estimators, this type of assumption
may be considered unrealistic in a world in which individuals self-select into treatment.4

To examine the consequence of dropping the assumption, we consider an alternative set
of conditions that allows selection into the program on the basis of prospective gains.

Ž .Suppose, as in Imbens and Angrist 1994 , that for each observation i, treatment
assignment is a deterministic function of z, but the function is different for different
persons or groups of persons. Consider the following set of assumptions on impacts and
treatment assignment:

Ž . Ž . Ž Ž .. Ž .ASSUMPTION A3 : i $ , x z is jointly independent of z near z . ii There existsi i i 0
Ž . Ž .&#0 such that x z #e *x z $e for all 0%e%& .i 0 i 0

Ž . Ž . Ž .THEOREM 3: Suppose that Assumptions RD , A1 , and A3 hold. We then ha)e
y#$y$

Ž . % Ž . Ž . &5 lim E $ 'x z #e $x z $e "1 " .i i 0 i 0 # $# x $xe!0

Ž .PROOF: Invoking the reasoning in Imbens and Angrist 1994 , we obtain
% & % &E x #$ 'z "z #e $E x #$ 'z "z $ei i i 0 i i i 0

% Ž . Ž . &"E $ 'x z #e $x z $e "1i i 0 i 0

" % & % &4# E x 'z "z #e $E x 'z "z $e ,i i 0 i i 0
from which the conclusion follows. Q.E.D.

" Ž . Ž . 4 Ž .For e#0 sufficiently small, the conditioning event x z #e $x z $e "1 in 5i 0 i 0
corresponds to the subgroup of persons for whom treatment changes discontinuously at

Ž . Ž .z . Therefore, 5 identifies the local average treatment effect LATE at z .0 0

2.3. Discussion

In each of the cases considered, identification was made possible by comparing persons
arbitrarily close to the point z who did and did not receive treatment. Without further0
assumptions such as the common effect assumption, treatment effects can only be
identified at z"z . This notion of identification is similar to the notion of identification0
at infinity.5

4 Ž .See Heckman, Lalonde, and Smith 1999 for related discussion.
5 Ž .See Chamberlain 1986 .
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For identification of treatment effects, we relied heavily on a local continuity restric-
% & % &tion on E " 'z and a known discontinuity in E x 'z . We now show, in the context of ai i i i

common effects model, that such functional form restrictions are necessary, and that
without them the model is nonparametrically unidentified. We can put the model for
outcomes in more familiar econometric notation by writing

Ž .y "" z #$#x #)i i i i

Ž . % & Ž .where " z !E " 'z and ) !" $" z . We argue that the usual conditional meani i i i i i
% &independence restriction, E ) 'z "0, is not sufficient for identification of the treatmenti i

effect, even for the common treatment effect case. For this purpose consider another
DGP, where we have

Ž . &y ""* z #0 #x #) ,i i i i

and where

Ž . Ž . % & & " % &4"* z !" z $$#E x 'z , ) !) #$# x $E x 'z .i i i i i i i i i

These two models are equivalent except that the treatment effect in the former case is $
whereas in the latter case it is equal to 0. We cannot distinguish the models in the

% &population if E ) 'z "0 is the only restriction available.i i

3. ESTIMATION

For both the sharp design and fuzzy design, the ratio

y#$y$
Ž .6 # $x $x

identifies the treatment effect at z"z . Thus, given consistent estimators y#, y$, x#,ˆ ˆ ˆ0
$ Ž .and x of the four one-sided limits in 6 , the treatment effect can be consistentlyˆ

estimated by

y#$y$ˆ ˆ
.# $x $xˆ ˆ

In principle, we can use any nonparametric estimator to estimate the limits. We first
consider one-sided kernel estimation and observe that under certain conditions an
estimate based on kernel regression will be numerically equivalent to a standard Wald
estimator. We then argue that such an estimator may have a poor finite sample property
due to the boundary problem and propose to avoid the boundary problem by using local

Ž .linear nonparametric regression LLR methods.
Consider the special case where we use kernel regression estimators based on

one-sided uniform kernels. For the uniform kernel, it is not difficult to show that

Ž .Ý y #w Ý y # 1$wi+ SS i i i+ SS i i# $y " , y " ,ˆ ˆ Ž .Ý w Ý 1$wi+ SS i i+ SS i

Ž .Ý x #w Ý x # 1$wi+ SS i i i+ SS i i# $x " , x " ,ˆ ˆ Ž .Ý w Ý 1$wi+ SS i i+ SS i
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Ž .where SS denotes the subsample such that z $h%z %z #h, w !1 z %z %z #h ,0 i 0 i 0 i 0
and h#0 denotes the bandwidth. The estimator is numerically equivalent to an IV
estimator for the regression of y on x which uses w as an instrument, applied to thei i i

ˆsubsample SS . Denote this estimator by $ .w
It is interesting to note that the regression discontinuity can ‘justify’ a Wald estimator

even when the standard IV assumption is violated. To see this, put the model in more
% &familiar econometric notation by writing " "E " #) ""#) . Under the commoni i i i

treatment assumption, this yields a model

y ""#x #$#) .i i i

Identification of $ does not require that the error term ) be uncorrelated with z . Alli i
Ž .that is required is continuity assumption A1 . As long as the researcher is willing to

ˆ ˆchange h appropriately as a function of the sample size, $ is consistent. Thus $ isw w
motivated by a different principle than is the usual Wald estimator, but for a particular
choice of kernel and subsample they are numerically equivalent.

ˆAlthough $ is numerically equivalent to a local Wald estimator, inference based onw
ˆ ˆ$ will be different from that based on a Wald estimator. $ will be asymptoticallyw w
biased, as are many other nonparametric-regression-based estimators, whereas the Wald
estimator is asymptotically unbiased by assumption. The bias problem is exacerbated in
the regression-discontinuity case due to the bad boundary behavior of the kernel
regression estimator: at boundary points, the bias of the kernel regression estimator
converges to zero at a slower rate than at interior points. Under conventional assump-
tions on the kernel function, the order of the bias of the standard kernel estimator is
Ž . Ž 2. 6O h at boundary points and O h at interior points. For our problem, all the points of

estimation are at boundaries, so the bias could be substantial in finite samples.7 It would
be misleading to use the conventional confidence interval based on the asymptotic

Ž .distribution of the asymptotically unbiased Wald estimator as the true coverage proba-
bility would be very different from the nominal coverage probability.

Because of the poor boundary performance of standard kernel estimators, we propose
Ž . Ž .instead to estimate the limits by local linear regression LLR , shown by Fan 1992 to

have better boundary properties than the traditional kernel regression estimator. The
local linear estimator for y#, for example, is given by a, whereˆ

n z $zi 02ˆŽ . Ž Ž .. Ž .a, b ! argmin y $a$b z $z K 1 z #z .ˆ Ý i i 0 i 0ž /ha , b i"1

Ž .Here, K # is a kernel function and h#0 is a suitable bandwidth. The smaller bias
associated with the LLR estimator implies that it is more rate-efficient than the
kernel-based estimator. Another advantage of LLR is that the bias does not depend on
the design density of the data. Because of these advantages, local linear methods are

6 Ž . Ž .See Hardle 1990 or Hardle and Linton 1994 for further discussion of the boundary bias¨ ¨
Ž .problem. Under slightly stronger assumptions than ours, Porter 1998 recently proposed an

alternative estimator for the sharp discontinuity design, constant effect model for which the
boundary bias problem does not exist.

7 The boundary bias formula of the kernel estimator suggests that the bias is the smallest when
% & % &the conditional expectations E y 'z and!or E x 'z have one-sided derivatives around z equali i i i 0

ˆto zero. We thus find that $ has a small bias only for the case where " has no correlation with z ,w i i
i.e., the case where z is a proper instrument and the Wald assumption is exactly satisfied near thei
discontinuity.
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deemed to be a better choice than standard kernel methods. The asymptotic distribution
of the treatment effect estimator based on local linear regression is derived in the
Appendix.

4. SUMMARY

The RD method provides a way of identifying mean treatment impacts for a subgroup
of the population under minimal assumptions. An advantage of the method is that it
bypasses many of the questions concerning model specification: both the question of
which variables to include in the model for outcomes and of their functional forms. A
limitation of the approach is that it only identifies treatment effects locally at the point at
which the probability of receiving treatment changes discontinuously. However, in some
cases this localized parameter is precisely the parameter of interest. It would be of
interest, for example, if the policy change being considered is a small change in the
program rules, such as lowering or raising the threshold for program entry, in which case
we would want to know the effect of treatment for the subpopulation affected by the
change.

In this paper, we considered the question of identification and estimation under two
RD designs, the sharp and the fuzzy design. The estimator we propose uses recently
developed local linear nonparametric regression techniques that avoid the poor boundary
behavior of the kernel regression estimator. We also discussed why the regression-discon-
tinuity design sometimes provides a possible justification for the Wald estimator, even
when the zero correlation condition is violated.
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APPENDIX

ˆ Ž .We next present the distribution theory for the estimator $ of the ratio 6 , where the limits are
Ž . % & Ž . % &estimated by local linear regression. Define m z !E y 'z "z and p z ! x 'z "z , and definei i i i

% & % & % & %# $ # $the limits lim E y 'z "z , lim E y 'z "z , lim E x 'z "z , and lim E x 'zz ! z i i z ! z i i z ! z i i z ! z i i0 0 0 0& #Ž . $Ž . #Ž . $Ž ."z by m z , m z , p z , and p z , respectively. Additionally, define0 0 0 0

2#Ž . % & 2$Ž . % &' z " lim var y 'z "z , ' z " lim var y 'z "z ,0 i i 0 i i# $z!z z!z0 0

# Ž . % & $ Ž . % &( z " lim cov y , x 'z "z , and ( z " lim cov y , x 'z "z .0 i i i 0 i i i# $z!z z!z0 0

Ž .THEOREM 4 Asymptotic Distribution : Suppose that:
Ž . Ž . Ž .i For z#z , m z and p z are twice continuously differentiable. There exists some M#0 such0
' #Ž . ' ' #Ž . ' ' #Ž . ' ' #Ž . ' ' #Ž . ' ' #Ž . ' Žthat m z , m) z , m* z and p z , p) z , p* z are uniformly bounded on z , z #0 0

& ' $Ž . ' ' $Ž . ' ' $Ž . ' ' $Ž . ' ' $Ž . ' ' $Ž . 'M . Similarly, m z , m) z , m* z and p z , p) z , p* z are uniformly bounded on
% .z $M, z .0 0
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Ž . #Ž . $Ž . #Ž . $Ž . #Ž . $Ž . #Ž . $Ž .ii The limits m z , m z , m) z , m) z , m* z , m* z , p z , p z ,0 0 0 0 0 0 0 0
#Ž . $Ž . #Ž . $Ž .p) z , p) z , p* z , and p* z exist and are finite.0 0 0 0
Ž . Ž .iii The density of z , f z , is continuous and bounded near z . It is also bounded away from zeroi 0

near z .0
Ž . Ž .iv K # is continuous, symmetric, and nonnegati)e-)alued with compact support.
Ž . 2Ž . Ž . Ž . Ž .v ' z "var y 'z is uniformly bounded near z . Similarly, ( z "cov y , x 'z is uni-i i i 0 i i i i

2#Ž . 2$Ž . #Ž . $Ž .formly bounded near z . Furthermore, the limits ' z , ' z , ( z , and ( z exist and are0 0 0 0 0
finite.

3 3 'Ž . % ' Ž . ' & % ' Ž . ' &# $vi lim E y $m z 'z "z and lim E y $m z z "z exist and are finite.z ! z i i i z ! z i i i0 0
Ž . $1 !5vii The bandwidth sequence satisfies h"h "( #n for some (. Then,n

y#$y$ y#$y$ˆ ˆ2
5 Ž .n $ !NN + , , ,f f# $ # $ž /x $x x $xˆ ˆ

where

1 y#$y$
# # $ $ # # $ $Ž Ž . Ž .. Ž Ž . Ž ..+ ! - m* z $- m* z $ - p* z $- p* z ,f 0 0 0 0# $ 2# $x $x Ž .x $x

and

1 # 2# $ 2$Ž Ž . Ž .., ! . ' z #. ' zf 0 02# $Ž .x $x

y#$y$
# # $ $Ž Ž . Ž ..$2 . ( z #. ( z0 03# $Ž .x $x

2# $Ž .y $y # # # $ $ $Ž Ž .Ž Ž .. Ž .Ž Ž ...# . p z 1$p z #. p z 1$p z ,0 0 0 04# $Ž .x $x

and where

2/ 2 / 3 / 2Ž Ž . . Ž Ž . .Ž Ž . .H u K u du $ H u K u du H uK u du (0 0 0#- ! ,2/ 2 / / 2Ž Ž . .Ž Ž . . Ž Ž . .H u K u du H K u du $ H uK u du0 0 0

2 2/ / 2 /ŽŽ Ž . . Ž Ž . . . Ž .H H s K s ds $ H sK s ds #u K u du0 0 0#. ! .22/ 2 / /Ž . %Ž Ž . .Ž Ž . . Ž Ž . . &f z ( # H u K u du H K u du $ H uK u du0 0 0 0

$ $ Ž .with - and . similarly defined but now with the integral in the limits of integration o)er $/, 0 .

PROOF: A derivation of the distribution of the estimator is available in Hahn, Todd, and Van der
Ž .Klaauw 1999 , or upon request from the authors.
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