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Abstract 

We review different approaches to nonparametric density and regression estimation. 
Kernel estimators are motivated from local averaging and solving ill-posed 
problems. Kernel estimators are compared to k-NN estimators, orthogonal series 
and splines. Pointwise and uniform confidence bands are described, and the choice 
of smoothing parameter is discussed. Finally, the method is applied to nonparametric 
prediction of time series and to semiparametric estimation. 

1. Nonparametric estimation in econometrics 

Although economic theory generally provides only loose restrictions on the 
distribution of observable quantities, much econometric work is based on tightly 
specified parametric models and likelihood based methods of inference. Under 
regularity conditions, maximum likelihood estimators consistently estimate the 
unknown parameters of the likelihood function. Furthermore, they are asymptoti- 
cally normal (at convergence rate the square root of the sample size) with a limiting 
variance matrix that is minimal according to the Cramer-Rao theory. Hypothesis 
tests constructed from the likelihood ratio, Wald or Lagrange multiplier principle 
have therefore maximum local asymptotic power. However, when the parametric 
model is not true, these estimators may not be fully efficient, and in many cases - for 
example in regression when the functional form is misspecified - may not even be 
consistent. The costs of imposing the strong restrictions required for parametric 
estimation and testing can be considerable. Furthermore, as McFadden says in his 
1985 presidential address to the Econometric Society, the parametric approach 

"interposes an untidy veil between econometric analysis and the propositions of economic 
theory, which are mostly abstract without specific dimensional or functional restrictions." 

Therefore, much effort has gone into developing procedures that can be used in the 
absence of strong a priori restrictions. This survey examines nonparametric 
smoothing methods which do not impose parametric restrictions on functional 
form. We put emphasis on econometric applications and implementations on 
currently available computer technology. 

There are many examples of density estimation in econometrics. Income distri- 
butions - see Hildenbrand and Hildenbrand (1986) - are of interest with regard to 
welfare analysis, while the density of stock returns has long been of interest to 
financial economists following M andelbrot (1963) and Fama (1965). Figure 1 shows 
a density estimate of the stock return data of Pagan and Schwert (1990) in comparison 
with a normal density. We include a bandwidth factor in the scale parameter to 
correct for the finite sample bias of the kernel method. 
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Figure 1 Density estimator of stock returns of Pagan and Schwert data compared with a mean zero 
normal density (thin line) with standard deviation ~/~2 + ~2, # = 0.035 and h = 0.009, both evaluated at 
a grid of 100 equispaced points. Sample size was 1104. The bandwidth h was determined by the XploRe 

macro denauto according to Silverman's rule of thumb method. 

Regression smoothing methods are used frequently in demand analysis - see for 
example Deaton (1991), Banks et al. (1993) and Hausman and Newey (1992). 
Figure 2 shows a nonparametric kernel regression estimate of the statistical Engel 
curve for food expenditure and total income. For comparison the (parametric) Leser 
curve is also included. 

There are four main uses for nonparametric smoothing procedures. Firstly, they 
can be employed as a convenient and succinct means of displaying the features of 
a dataset and hence to aid practical parametric model building. Secondly, they can 
be used for diagnostic checking of an estimated parametric model. Thirdly, one may 
want to conduct inference under only the very weak restrictions imposed in fully 
nonparametricstructures. Finally, nonparametric estimators are frequently required 
in the construction of estimators of Euclidean-valued quantities in semiparametric 
models. 

By using smoothing methods one can broaden the class of structures under which 
the chosen procedure gives valid inference. Unfortunately, this robustness is not 

free. Centered nonparametric estimators converge at rate ~ h ,  where h ~ 0 is a 

smoothing parameter, which is slower than the w/~ rate for parametric estimators 
in correctly specified models. It is also sometimes suggested that the asymptotic 
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Figure 2. A kernel regression smoother applied to the food expenditure as a function of total income. 
Data from the Family Expenditure Survey (1968-1983), year 1973, Quartic kernel, bandwidth h = 0.2. 
The data have been normalized by mean income. Standard deviation of net income is 0.544. The kernel 

has been computed using the XploRe macro regest. 

distributions themselves can be poor approximations in small samples. However, 
this problem is also found in parametric situations. The difference is quantitative 
rather than qualitative: typically, centered nonparametric estimators behave simi- 
larly to parametric ones in which n has been replaced by nh. The closeness of the 
approximation is investigated further in Hall (1992). 

Smoothing techniques have a long history starting at least in 1857 when the 
Saxonian economist Engel found the law named after him. He analyzed Belgian 
data on household expenditure, using what we would now call the regressogram. 
Whittaker (1923) used a graduation method for regression curve estimation which 
one would now call spline smoothing. Nadaraya (1964) and Watson (1964) provided 
an extension for general random design based on kernel methods. In time series, 
Daniell (1946) introduced the smoothed periodogram for consistent estimation of 
the spectral density. Fix and Hodges (1951) extended this for the estimation of a 
probability density. Rosenblatt (1956) proved asymptotic consistency of the kernel 
density estimator. 

These methods have developed considerably in the last ten years, and are now 
frequently used by applied econometricians- see the recent survey by Deaton 
(1993). The massive increase in computing power as well as the increased availability 
of large cross-sectional and high-frequency financial time-series datasets are partly 
responsible for the popularity of these methods. They are typically simple to 
implement in software like GAUSS or XploRe (1993). 

We base our survey of these methods around kernels. All the techniques we review 
for nonparametric regression are linear in the data, and thus can be viewed as kernel 
estimators with a certain equivalent weighting function. Since smoothing parameter 
selection methods and confidence intervals have been mostly studied for kernels, 
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we feel obliged to concentrate on these methods as the basic unit of account in 
nonparametric smoothing. 

2. Density estimation 

It is simplest to describe the nonparametric approach in the setting of density 
estimation, so we begin with that. Suppose we are given iid real-valued observations 
{X~}~= 1 with density f .  Sometimes - for the crossvalidation algorithm described in 
Section 4 and for semiparametric estimation - it is required to estimate f at each 
sample point, while on other occasions it is sufficient to estimate at a grid of points 
x l , . . . ,  XM for M fixed. We shall for the most part restrict our attention to the latter 
situation, and in particular concentrate on estimation at a single point x. 

Below we give two approaches to estimating f (x) .  

2.1. Kernels as windows 

If f is smooth in a small neighborhood [-x - h, x + hi of x, we can justify the 
following approximation, 

f 
x + h  

2h ' f (x )  ~ f (u )  du = P ( X E  Ix  - h, x + h] ), (1) 
,d x - h  

by the mean value theorem. The right-hand side of (1) can be approximated by 
counting the number of Xi's in this small interval of length 2h, and then dividing 
by n. This is a histogram estimator with bincenter x and binwidth 2h. Let K ( u ) =  
½I([ul ~< 1), where I(.) is the indicator function taking the value 1 when the event is 
true and zero otherwise. Then the histogram estimator can be written as 

i ( x )  = n - 1  Kh(x - x , ) ,  (2) 
i = 1  

where Kh(') = h-1K( ' /h) .  This is also a kernel density estimator of f ( x )  with kernel 
K(u) = ½I(lul ~< 1) and bandwidth h. 

The step function kernel weights each observation inside the window eqt/ally, 
even though observations closer to x should possess better information than more 
distant ones. In addition, the step function estimator is discontinuous in x, which 
is unattractive given the smoothness assumption on f .  Both objectives can be 
satisfied by choosing a smoother "window function" K as kernel, i.e. one for which 
K(u) ~ 0 as ] u] ~ 1. One example is the so-called quartic kernel 

K(u) - 1 5 t l  - u2)2I([ul <<, 1). (3) 
- -  1 6  ~, 

In the next section we give an alternative motivation for kernel estimators. The 
less technically able reader may skip this section. 
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2.2. Kernels and ill-posed problems 

An alternative approach to the estimation of f is to find the best smooth approxi- 
mation to the empirical distribution function and to take its derivative. 

The distribution function F is related to f by 

f 
o0  

Af(x)  = I(u <~ x)f(u) du = F(x), 
- a o  

(4) 

which is called a Fredholm equation with integral operator A f ( x ) =  ~_ ~f(u)du.  
Recovering the density from the distribution function is the same as finding the 
inverse of the operator A. In practice, we must replace the distribution function by 
the empirical distribution function (edf) F,(x) = n-  lY~7= il(X~ <<. x), which converges 

to F at rate v/n. However, this is a step function and cannot be differentiated to 
obtain an approximation to f(x).  Put another way, the Fredholm problem is 
ill-posed since for a sequence F, tending to F, the solutions (satisfying A f ,  = F,) do 
not necessarily converge to f :  the inverse operator in (4) is not continuous, see 
Vapnik (1982, p. 22). 

Solutions to ill-posed problems can be obtained using the Tikhonov (1963) 
regularization method. Let ~ ( f )  be a lower semicontinuous functional called the 
stabilizer. The idea of the regularization method is to find indirectly a solution to 
Af  = F by use of the stabilizer. Note that the solution of A f  = F minimizes (with 
respect to f )  

The stabilizer 12(f )= Ilffl 2 is now added to this equation with a Lagrange 
parameter 2, 

R~(f, F) = l(x >1 u)f(u) du - F(x) dx + ~. f2(u) du. (5) 
- - o 0  - - o o  - - 0 0  

Since we do not know F(x), we replace it by the edf F,(x) and obtain the problem 
of minimizing the functional Rz(f ,  F,) with respect to f .  

A necessary condition for a solution f is 

I(x>>.u I(x>~s s) d s - F , ( x  d x + 2  u)=O. 
- - G O  - -  o 0  

Applying the Fourier transform for generalized functions and noting that the 
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Fourier transform ofI(u ~> 0) is (i/co) + rt6(~o) (with 6(.) the delta function), we obtain 

where F is the Fourier transform of f .  Solving this equation for F and then 
applying the inverse Fourier transform, we obtain 

f ( x ) =  n -~ ~ ~ e  I~-x'l/'/~. 
i=1 2 @  

Thus we obtain a kernel estimator with kernel K(u)= ½exp(-]ul)  and bandwidth 

h = x/~. More details are given in Vapnik (1982, p. 302). 

2.3. Properties of kernels 

In the first two sections we derived different approaches to kernel smoothing. Here 
we would like to collect and summarize some properties of kernels. A kernel is a 
piecewise continuous function, symmetric around zero, integrating to one: 

= K ( -  u); fK(u) du = 1. (6) K(u) 

It need not have bounded support, although many commonly used kernels live on 
[ -  1, 1]. In most applications K is a positive probability density function, however 
for theoretical reasons it is sometimes useful to consider kernels that take on 
negative values. For  any integer j, let 

u~(K) = f uJK(u)du; v~(K) = f K(u)J du. 

The order p of a kernel is defined as the first nonzero moment, 

# i = 0 ,  j = l  . . . . .  p - l ;  #v :~ 0. (7) 

We mostly restrict our attention to positive kernels which can be at most of order 2. 
An example of a higher order kernel (of order 4) is 

K(u) = 3~(7u 4 -  10u z + 3)l([ul ~< 1). 

A list of common kernel functions is given in Table 1. We shall comment later on 
the values in the third column. 
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Table 1 
Common kernel functions. 

Kernel K(u) D(Kop~, K) 

Epanechnikov ¼(1 -- u2)l(lul ~ 1) 1 
Quartic Tg(llS - u2)2I(I u l ~< 1) 1.005 
Triangular (1 -- [ul)l(lu[ <~ 1) 1.011 
Gauss (2n)- 1/2 exp(-- u2/2) 1.041 
Uniform ½I([ u l ~< 1) 1.060 

2.4. Properties of the kernel density estimator 

The kernel estimator is a sum of iid random variables, and therefore 

E [fn(x)] = fKh(X -- z)f(z)dz = Kh*f(x), (8) 

where * denotes convolution, assuming the integral exists. When f is N(O, a 2) and 
K is standard normal, E[fh(x)] is therefore the normal density with standard 

deviation x / ~  + h 2 evaluated at x, see Silverman (1986, p. 37). This explains our 
modification to the normal density in Figure 1. 

More generally, it is necessary to approximate E[fh(x)] by a Taylor series 
expansion. Firstly, we change variables 

E[y.(x)] = f K(u)y(x - uh)d.. (9) 

Then expanding f ( x  - uh) about f(x) gives 

E[fh(x)] = f(x) + ½h21a2(K)f"(x) + o(h2), (lO) 

provided f"(x) is continuous in a neighborhood of x. Therefore, the bias of fh(x) is 
O(h z) as h ~ 0. 

By similar calculation, 

Var [fh(x)] ~ ~ v2(K)f(x), (11) 

see Silverman (1986, p. 38). Therefore, provided h ~ 0 and nh ~ oo, f~(x)P-~ f(x). 
Further asymptotic properties of the kernel density estimator are given in Prakasa 
Rao (1983). 

The statistical properties of fh(x) depend closely on the bandwidth h: the bias 



2304 W. HMdle and O. Linton 

increases and the variance decreases with h. We investigate how the estimator itself 
depends on the bandwidth using the income data of Figure 2. Figure 3a shows a 
kernel density estimate for the income data with bandwidth h = 0.2 computed using 
the quartic kernel in Equation 3 and evaluated at a grid of 100 equispaced points. 
There is a clear bimodal structure for this implementation. A larger bandwidth 
h = 0.4 creates a single model structure as shown in Figure 3b, while a smaller 
h = 0.05 results in Figure 3c where, in addition to the bimodal feature, there is 
considerable small scale variation in the density. 

It is therefore important to have some method of choosing h. This problem has 
been heavily researched - see Jones et al. (1992) for a collection of recent results and 
discussion. We take up the issue of automatic bandwidth selection in greater detail 
for the regression case in Section 4.2. We mention here one method that is 
frequently used in p rac t ice -  Silverman's rule of thumb. Let ~2 be the sample 
variance of the data. Silverman (1986) proposed choosing the bandwidth to be 

h = 1.364~" v2(K)~i/Sdn-1/5. 
~ #~(K)J 

This rule is optimal (according to the IMSE - see Section 4 below) for the normal 
density, and is not far from optimal for most symmetric, unimodal densities. This 
procedure was used to select h in Figure 1. 

2.5. Estimation of  multivariate densities, their derivatives and bias reduction 

A multivariate (d-dimensional) density function f can be estimated by the kernel 
estimator 

fu (x )  = 1 ~ ku(x - Xi), (12) 
n i = l  

where ku( ' )=  {de t (H)}- lk(H-  ~'), where k(.) is a d-dimensional kernel function, 
while H is a d by d bandwidth matrix. A convenient choice in practice is to take 
H = hS ~/2, where S is the sample covariance matrix and h is a scalar bandwidth 
sequence, and to give k a product structure, i.e. let k(u)= l-[~=lK(Uj), where 
u = (u~,. . . ,  ua) r and K(.) is a univariate kernel function. 

Partial derivatives of f can be estimated by the appropriate partial derivatives 
of fu (x)  (providing k(.) has the same number of nonzero continuous derivatives). 
For any d-vector r = (r~ . . . . .  ra) and any function g(') define 

g(')(x) = ~r,x l "" ~"dxa g(x), 

where Jr ]=  ~2~=1 r j, then fg](x) estimates f(x).  
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Figure 3. Kernel density estimates of net income distribution: (a) h = 0.2, (b) h = 0.4, (c) h = 0.05. Family 
Expenditure Survey (1968-1983). XploRe macro denest. Year 1973. 
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The properties of multivariate derivative estimators are described in Prakasa Rao 
(1983, p. 237). In fact, when a bandwidth H = hA is used, where h is scalar and A is 
any fixed positive definite d by d matrix, then Var [f~)(x)] = O(n- lh-(Zlrq +d)), while 
the bias is O(h2). For  a given bandwidth h, the variance increases with the number 
of derivatives being estimated and with the dimensionality of X. The latter effect is 
well known as the curse ofdimensionality. 

It is possible to improve the order of magnitude of the bias by using a pth order 
kernel, where p > 2. In this case, the Taylor series expansion argument shows that 
E[fh(x)] -- f(x) = O(hP), where p is an even integer. Unfortunately, with this method 
there is the possibility of a negative density estimate, since K must be negative 
somewhere. Abramson (1982) and Jones et al. (1993) define bias reduction techniques 
that ensure a positive estimate. Jones and Foster (1993) review a number of other 
bias reduction methods. 

The merits of bias reduction methods are based on asymptotic approximations. 
Marron and Wand (1992) derive exact expressions for the first two moments of higher 
order kernel estimators in a general class of mixture densities and find that unless 
very large samples are used, these estimators may not perform as well as the 
asymptotic approximations suggest. Unless otherwise stated, we restrict our 
attention to second order kernel estimators. 

2.6. Fast implementation of density estimation 

Fast evaluation of Equation 2 is especially important for optimization of the 
smoothing parameter. This topic will be treated in Section 4.2. If the kernel density 
estimator has to be computed at each observation point for k different bandwidths, 
the number of calculations are O(nZhk) for kernels with bounded support. For  the 
family expenditure dataset of Figure 1 with about 7000 observations this would 
take too long for the type of interactive data analysis we envisage. To resolve this 
problem we introduce the idea of discretization. The method is to map the raw data 
onto an equally spaced grid of smaller cardinality. All subsequent calculations are 
performed on this data summary which results in considerable computational 
savings. 

Let Ht(x; A), l = 0, 1 . . . . .  M - 1, be the lth histogram estimator o f f (x )  with origin 
l/M and small binwidth A. The sensitivity of histograms with respect to choice of 
origin is well known, see, e.g. H/irdle (1991, Figure 1.16). However, if histograms 
with different origins are then repeatedly averaged, the result becomes independent 
of the histograms' origins. Let fM,a(x) = (1/m)~ff=oHt(x; A) be the averaged histo- 
gram estimator. Then 

M 

f~t,a(X)= 1 ~ I(x~Bj) ~ nj_iw i, (13) 
n n j e y  i= - M  
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where ~ e = {  . . . .  - 1 , 0 , 1  . . . .  }, B j = [ b j - ½ h ,  b j+½h]  with h = A / M  and b j = j h ,  
while nj = ~"i= 11(XieBJ) and wi = (M -- t i l /M).  At the bincenters 

1 M 
fM, a(bj)= ~, ~M'=- nj_,w,. 

Note that {w~}~ -M is, in fact, a discrete approximation to the (rescaled) triangular 
kernel K(u )= (1 - [u l ) l ( l u l  <~ 1). More generally, weights w i can be used that 
represent the discretization of any kernel K. When K is supported on [ -  1, 1], wi 
is the rescaled evaluation of K at the points -- i /M  (i = -- M . . . . .  M). I fa  kernel with 
non-compact support is used, such as the Gaussian for example, it is necessary to 
truncate the kernel function. Figure 4 shows the weights chosen from the quartic 
kernel with M = 5. 

Since Equation 13 is essentially a convolution of the discrete kernel weights w~ 
with the bincounts n j, modern statistical languages such as GAUSS or XploRe that 
supply a convolution command are very convenient for computation of Equation 13. 
Binning the data takes exactly n operations. If C denotes the number of nonempty 
bins, then evaluation of the binned estimator at the nonempty bins requires O ( M C )  
operations. In total we have a computational cost of O(n + kMma x C) operations for 
evaluating the binned estimator at k bandwidths, where Mm~, = Max{M j; j = 1 . . . . .  k}, 
This is a big improvement. 

Kernel and Discretization 
Ii  ] I I I 

CO 
d l 

{D 

Nd- 

O d -  

-;.o o.'o ols 11o 
X 

Figure 4. The quartic kernel qua(u) = ~ (1  -- uZ)21(lu] <~ 1). Discretizing the kernel (without rescaling) 
leads to w-i = qua(JIM),  i = - M . . . . .  M .  Here M = 5 was chosen. The weights are represented by the 

thick step function. 
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The discretization technique also works for estimating derivatives and multi- 
variate densities, see H~irdle and Scott (1992) and Turlach (1992). This method is 
basically a time domain version of the Fast Fourier Transform computational 
approach advocated in Silverman (1986), see also Jones (1989). 

3. Regression estimation 

The most common method for studying the relationship between two variables X 
and Y is to estimate the conditional expectation function m ( x ) = E ( Y l X = x ) .  
Suppose that 

Yi = m(Xi) + el, i = 1 . . . .  , n, (14) 

where ei is an independent random error satisfying E(e i [X i=x)=O,  and 
Var(eilXi = x ) =  aZ(x). In this section we restrict our attention to independent 
sampling, but some extensions to the dependent sampling case are given in Section 
5. The methods we consider are appropriate for both random design, where the (X~, Y~) 
are iid, and f ixed design, where the X~ are fixed in repeated samples. In the random 
design case, X is an ancillary statistic, and standard statistical practice - see Cox 
and Hinkley (1974)- is to make inferences conditional on the sample {X~}~'= 1. 
However, many papers in the literature prove theoretical properties unconditionally, 
and we shall, for ease of exposition, present results in this form. We quote most 
results only for the case where X is scalar, although where appropriate we describe 
the extension to multivariate data. 

In some cases, it is convenient to restrict attention to the equispaced design 
sequence X~ = i/n, i =  1 . . . . .  n. Although this is unsuitable for most econometric 
applications, there are situations where it is of interest; specifically, time itself is 
conveniently described in this way. Also, the relative ranks of any variable (within 
a given sample) are naturally equispaced - see Anand et al. (1993). 

The estimators of re(x) we describe are all of the form ~ '=  1 W,i(x)¥~ for some 
weighting sequence {W,~(x)}~'= 1, but arise from different motivations and possess 
different statistical properties. 

3.1. Kernel estimators 

Given the technique of kernel density estimation, a natural way to estimate m(') is 
first to compute an estimate of the joint density f ( x ,  y) of (X, Y) and, then, to 
integrate it according to the formula 

f y f ( x ,  y) dy 

re(x) - f f ( x ,  y) dy 
(15) 
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The kernel density estimate fh(X, y) of f ( x ,  y) is 

fh(x, y) = n-1 ~ Kn(x _ Xi)Kh(y - Yi), 
i=l  

and by Equation 6 

fh(x, y) dy = n -  1 ~ Kh(X _ Xi); 
i = 1  f yf~(x,  y )dy  = n - '  ~ Kh(X -- Xl)Yi. 

i = 1  

Plugging these into the numerator  and denominator  of Equation 15 we obtain the 
Nadaraya-Watson  kernel estimate 

Kh(X - X l) Yi 
ff~h(X) = i= 1 (16) 

Kh(X --  X i )  
i = 1  

The bandwidth h determines the degree of smoothness of rhh. This can be 
immediately seen by considering the limits for h tending to zero or to infinity, 
respectively. Indeed, at an observation Xi, ff~h(Xi) ~ Y~, as h ~ 0, while at an arbitrary 
point x, rhh(X ) ~ Y, as h ~ ~ .  These two limit considerations make it clear that the 
smoothing parameter  h, in relation to the sample size n, should not converge to zero 
too rapidly nor too slowly. Conditions for consistency of rhh are given in the 
following theorem, proved in Schuster (1972): 

Theorem I 

Let K(')  satisfy ~l K(u) l du ~< ~ and Limb,i. oouK(u) = 0. Suppose also that m(x), f (x ) ,  
and a2(x) are continuous at x, and f ( x )  > 0. Then, provided h = h(n) ~ 0 and nh ~ o0 
as n ~  ~ ,  we have 

~h(x) P-% re(x). 

The kernel estimator is asymptotically normal, as was first shown in Schuster 
(1972). 

Theorem 2 

Suppose in addition to the conditions of Theorem 1 that ~l K(u)l 2 +7 du < ~ ,  f o r  
some r/> 0. Suppose also that m(x) and f ( x )  are twice continuously differentiable 
at x and that E(I YIZ+nlx) exists and is continuous at x. Finally, suppose that 
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Lim hSn < oo.Then 

X/C~Erfih(X)- m(x) -- h2 B,w(x) ] =~ N(O, V,w(x) ), 

where 

B,w(x) = ½1~2 m" x + 2m' x x 

V.w(X) = v2(K)~2(x)/f(x).  

The Nadaraya-Watson estimator has an obvious generalization to d-dimensional 
explanatory variables and pth order kernels. In this case, assuming a common 
bandwidth h is used, the (asymptotic) bias is O(hP), when p is an even integer, while 
the (asymptotic) variance is O(n- lh-d). 

3.2. k-Nearest neighbor estimators 

3.2.1. Ordinary k-NN estimators 

The kernel estimate was defined as a weighted average of the response variables in 
a fixed neighborhood of x. The k-nearest neighbor (k-NN) estimate is defined as a 
weighted average of the response variables in a varying neighborhood. This neighbor- 
hood is defined through those X-variables which are among the k-nearest neighbors 
of a point x. 

Let X ( x ) =  {i:X i is one of the k-NN to x} be the set of indices of the k-nearest 
neighbors of x. The k-NN estimate is the average of Y's with index in .At(x), 

~k(X)= 1_ Z Yi. (17) 
k JeW(x) 

Connections to kernel smoothing can be made by considering Equation 17 as a~ 
kernel smoother with uniform kernel K(u)= ½I(lu] ~< 1) and variable bandwidth 
h = R(k), the distance between x and its furthest k-NN, 

K / X  - Xi~ y 

i = l  

(18) 

Note that in Equation 18, for this specific kernel, the denominator is equal to (k/nR) 
the k-NN density estimate of f(x). The formula in Equation 18 provides sensible 
estimators for arbitrary kernels. The bias and variance of this more general k -NN 
estimator is given in a theorem by Mack (1981). 
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Theorem 3 

Let the conditions of Theorem 2 hold, except that k ~ oo, k/n ~ 0 and LimkS/n  * < oe 
as n ~ oo. Then 

,v/k[Ihk(X) - re(x) - (k/n)2 B. . (x)  ] =~ N(O, gnn(X) ) , 

where 

m"(x) + 2m'(x) (x 

B..(x) =/t2(K ) 8f2(x~ 

V..(x) = 2aE(x)v2(K). 

In contrast to kernel smoothing, the variance of the k - N N  regression smoother 
does not depend on f ,  the density of X. This makes sense since the k - N N  estimator 
always averages over exactly k observations independently of the distribution of the 
X-variables. The bias constant B,,(x)  is also different from the one for kernel 
estimators given in Theorem 2. An approximate identity between k - N N  and kernel 
smoothers can be obtained by setting 

k = 2nhf(x), (19) 

or equivalently h = k/[2nf (x)] .  For this choice of k or h respectively, the asymptotic 
mean squared error formulas of Theorem 2 and Theorem 3 are identical. 

3.2.2. Symmetrized k - N N  estimators 

A computationally useful modification of/~/k is to restrict the k-nearest neighbors 
always to symmetric neighborhoods, i.e., one takes k/2 neighbors to the left and k/2 
neighbors to the right. In this case, weight-updating formulas can be given, see 
H/irdle (1990, Section 3.2). The bias formulas are slightly different, see H/irdle and 
Carroll (1990), but Equation 19 remains true. 

3.3. Local polynomial estimators 

The Nadaraya-Watson estimator can be regarded as the solution of the minimiza- 
tion problem 

rhh(X) = argo min ~ Kh(X -- Xi). (20) 
i=1 
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This motivates the local polynomial class of estimators. Let 0o . . . .  ,0p minimize 

Kh(X -- X , ) ]  V Y~ _ Oo - Oa(X, - x) . . . . .  O, ( x * -  x)P] z (21) 
i=1 L p! J " 

Then 00 serves as an estimator of m(x), while 0j. estimates the j th  derivative of m. 
Clearly, 0 o is linear in Y. A variation on these estimators called LOWESS was first 
considered in Cleveland (1979) who employed a nearest neighbor window. Fan 
(1992) establishes an asymptotic approximation for the case where p = 1, which he 
calls the local linear estimator lhh,t(x ). 

Theorem 4 

Let the conditions of Theorem 2 hold. Then 

x//nh [rhh3(x) -- m ( x ) -  h2Bt(x) ] =~ N(O, Vl(x) ), 

where 

1 tt X B,(x) = ~/~2(K)m ( ) 

Vt(x ) = v2(K)aZ(x)/f (x). 

The local linear estimator is unbiased when m is linear, while the Nadaraya-Watson 
estimator may be biased depending on the marginal density of the design. 

We note here that fitting higher order polynomials can result in bias reduction, 
see Fan and Gijbels (1992) and Ruppert and Wand (1992)- who also extend the 
analysis to multidimensional explanatory variables. 

The principle underlying the local polynomial estimator can be generalized in a 
number of ways. Tibshirani (1984) introduced the local likelihood procedure in 
which an arbitrary parametric regression function 9(x; O) substitutes the polynomial 
in Equation 21. Fan, Heckman and Wand (1992) developed a theory for a nonpara- 
metric estimator in a GLIM (Limited Dependent Variable) model in which, for 
example, a probit likelihood function replaces the polynomial in Equation 21. An 
advantage of this procedure is that low bias results when the parametric model is 
true (Linton and Nielsen 1993). 

3.4. Spline estimators 

For any estimate rfi of m, the residual sum of squares (RSS) is defined as 
Z~'= 1 [ Y~ - tfi(Xg)] 2, which is a widely used criterion, in other contexts, for generating 
estimators of regression functions. However, the RSS is minimized by rh interpolating 
the data, assuming no ties in the X's. To avoid this problem it is necessary to add 
a stabilizer. Most work is based on the stabilizer 12(tfi) = ~[rh"(u)] 2 du, although see 
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Ansley et al. (1993) and Koenker et al. (1993) for alternatives. The cubic spline 
estimator rhx is the (unique) minimizer of 

Ra(rh, m) = i=1 ~" [ Yi - rh(Xi)] 2 + 2 f[rfi"(u)] 2 du. (22) 

The spline rhx has the following properties. It is a cubic polynomial between two 
successive X-values at the observation points rh~(.) and its first two derivatives are 
continuous; at the boundary of the observation interval the spline is linear. This 
characterization of the solution to Equation 22 allows the integral term on the right 
hand side to be replaced by a quadratic form, see Eubank (1988) and Wahba (1990), 
and computation of the estimator proceeds by standard, although computationally 
intensive, matrix techniques. 

The smoothing parameter 2 controls the degree of smoothness of the estimator 
~h~. As ~. ~ 0 ,  rh~ interpolates the observations, while if 2--) 0% rh~ tends to a least 
squares regression line. Although dlx is linear in the Y data, see H/irdle (1990, 
pp 58-59), its dependency on the design and on the smoothing parameter is rather 
complicated. This has resulted in rather less treatment of the statistical properties 
of these estimators, except in rather simple settings, although see Wahba (1990) - in 
fact, the extension to multivariate design is not straightforward. However, splines 
are asymptotically equivalent to kernel smoothers as Silverman (1984) showed. The 
equivalent kernel is 

k 4 2 /  \ x / 2  
(23) 

which is of fourth order, since its first three moments are zero, while the equivalent 
bandwidth h = h(2; X~) is 

h(2; Xi)  = 21/'*n- 1/4 f (Xi)- I/4. (24) 

One advantage of spline estimators over kernels is that global inequality and 
equality constraints can be imposed more conveniently. For example, it may be 
desirable to restrict the smooth to pass through a particular point - see Jones (1985). 
Silverman 0985) discusses a Bayesian interpretation of the spline procedure. 
However, from Section 2.2 we conclude that this interpretation can also be given 
to kernel estimators. 

3.5. Series est imators 

Series estimators have received considerable attention in the econometrics literature, 
following Elbadawi et al. (1983). This theory is very much tied to the structure of 
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Hilbert space. Suppose that m has an expansion for all x: 

re(x) = ~ fljqgj(x), (25) 
j = O  

in terms of the orthogonal basis functions {~0j}j~ o and their coefficients {flj}j~o- 
Suitable basis systems include the Legendre  polynomials described in H~trdle (1990), 
and the Fourier  series used in Gallant and Souza (1991). 

A simple method of estimating re(x) involves firstly selecting a basis system and 
a truncation sequence t(n), where t(n) is an integer less than n, and then regressing 
Yi on ~oti = (q~o(Xi) . . . . .  qgt(X,)) T. Let {/~j}~"--)o be the least squares "parameter" 
estimates, then 

t(n) ^ 

lht~,)(x) ~ fljcpi(x)= ~ W,i(x)Yi ,  (26) 
j = O  i = 1  

where W,(x)  = (W,1, .  . . , 141,,) r, with 

W . ( x )  T ~ -1  ~. = ~o,xtq~ , a , , )  ~ , ,  (27) 

where q~tx = (q~o(X), ... , ~ot(x)) r and q~t = (~otl . . . .  , q~t,) T. 
These estimators are typically very easy to compute. In addition, the extension 

to additive structures and semiparametric models is convenient, see Andrews and 
Whang (1990) and Andrews (1991). Finally, provided t(n) grows at a sufficiently fast 
rate, the optimal (given the smoothness of m) rate of convergence can be 
established - see Stone (1982), while fixed window kernels achieve at best a rate of 
convergence (of MSE) of n 4Is. However, the same effect can be achieved by using a 
kernel estimator, where the order of the kernel changes with n in such a way as to 
produce bias reduction of the desired degree, see Miiller (1987). In any case, the 
evidence of Marron and Wand (1992) cautions against the application of bias 
reduction techniques unless quite large sample sizes are available. Finally, a major 
disadvantage with the series method is that there is relatively little theory about 
how to select the basis system and the smoothing parameter t(n). 

3.6. Kernels,  k - N N ,  splines and series 

Splines and series are both "global" methods in the sense that they try to 
approximate the whole curve at once, while kernel and nearest neighbor methods 
work separately on each estimation point. Nevertheless, when X is uniformly 
distributed, kernels and nearest neighbor estimators of re(x) are identical, while 
spline estimators are roughly equivalent to a kernel estimator of order 4. Only when 
the design is not equispaced, do substantial differences appear. 
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We apply kernel, k -NN,  orthogonal series (we used the Legendre system of 
orthogonal polynomials), and splines to the car data set (Table 7, pp 352-355 in 
Chambers et al. (1983)). 

In each plot, we give a scatterplot of the data x = price in dollars of car (in 1979) 
versus y = miles per US gallon of that car, and one of the nonparametric estimators. 
The sample size is n = 74 observations. In Figure 5a we have plotted together with 
the raw data a kernel smoother rh h for which a quartic kernel was used with h = 2000. 
Very similar to this is the spline smoother shown in Figure 5b (2 = 109). In this 
example, the X's are not too far from uniform. The effective local bandwidth for 
the spline smoother from Equation 24 is a function of f -  1/4 only, which does not 
vary that much. Of course at the right end with the isolated observation at x -- 15906 
and y = 21 (Cadillac Seville) both kernel and splines must have difficulties. Both 
work essentially with a window of fixed width. The series estimator (Figure 5d) with 
t = 8 is quite close to the spline estimator. 

In contrast to these regression estimators stands the k - N N  smoother (k = 11) in 
Figure 5c. We used the symmetrized k - N N  estimator for this plot. By formula (19) 
the dependence of k on f is much stronger than for the spline. At the right end of 
the price scale no local effect from the outlier described above is visible. By contrast 
in the main body of the data where the density is high this k - N N  smoother tends 
to be wiggly. 

3.7. Confidence intervals 

The asymptotic distribution results contained in Theorems 2-4  can be used to 
calculate pointwise confidence intervals for the estimators described above. In 
practice, it is usual to ignore the bias term, since this is rather complicated, 
depending on higher derivatives of the regression function and perhaps on the 
derivatives of the density of X. This approach can be justified when a bandwidth is 
chosen that makes the bias relatively small. 

In this section we restrict our attention to the Nadaraya-Watson  regression 
estimator. In this case, we suppose that h n l / 5 ~  O, which ensures that the bias term 
does not appear in the limiting distribution. Let 

CLO(x) = rfih(X ) -- C~/2~ 

CUP(x) = rhh(X ) + c~/2~ , 

where ~ ( % ) =  ( 1 -  ~) with ~ ( . )  the standard normal distribution, while ~2 is a 
consistent estimate of the asymptotic variance of tfin(x ). Suitable estimators include 

(|) g2 = n -  l h -  lv2(K)d~(x)/fh(X ) 

(2) ~ ~2 s~ = o'h (x)  W.,(x) 2 

i=1  
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n 
^2 ~-~ 2 ^2 (3) s 3 = ~ W,i(x)e i , 

/ = 1  

where fh(X) is defined in Equation 2, ~i = Y i -  thh(Xi) are the nonparametric 
residuals and ^ 2  - -  n ^2  ah(X)--Zi= 1W, i(x)ei is a nonparametric estimator of a2(x)-see 
Robinson (1987) and Hildenbrand and Kneip (1992) for a discussion of alternative 
conditional variance estimators and their application. 

With the above definitions. 

P{m(x)e[CLO(x), CUP(x)] } ~ 1 - a. (28) 

These confidence intervals are frequently employed in econometric applications, see 
for example Bierens and Pott-Buter (1990), Banks et al. (1993) and Gozalo (1989). 
This approach is relevant if the behavior of the regression function at a single point 
is under consideration. Usually, however, its behavior over an interval is under 
study. In this case, pointwise confidence intervals do not take account of the joint 
nature of the implicit null hypothesis. 

We now consider uniform confidence bands for the function m, over some 
compact subset X of the support of X. Without loss of generality we take Z = [0, 1]. 
We require functions CLO*(x) and CUP*(x) such that 

P{m(x)e[CLO*(x),CUP*(x)] Vxez} ~ 1 -- e. (29) 

Let 

26 [_4~z2v2(K)_] J ' 

{ ~  1" [ - v 2 ( K ' ) " ] ] ^  
CUP*(x) = ~h(x) + + 6 + 26 L4n vz(K)Jf  - - I n  ~ $ 1 ,  

where 6 = x/2 log(l/h), and exp [ -  2 e x p ( -  c*)] = (1 - a). Then (29) is satisfied under 
the conditions given in H/irdle (1990, Theorem 4.3.1). See also Prakasa Rao (1983, 
Theorem 2.1.17) for a treatment of the same problem for density estimators. 

In Figure 6 we show the uniform confidence banffs for the income data of Figure 2. 
Hall (1993) advocates using the bootstrap to construct uniform confidence bands. 

He argues that the error in (29) is O(1/log n), which can be improved to O((log h-  1)3/ 
nh) by the judicious use of this resampling method in the random design case. See 
also Hall (1992) and H/irdle (1990) for further applications of the bootstrap in 
nonparametric statistics. 
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E n g e l  C u r v e  a n d  C o n f i d e n c e  B a n d s  " 
i i i i i 

2-  

• • . . .  ) .  :.:, : : :?.S.:~;~-, : . . : :~.= ( ~  ,:~ ,, . . . .  : ~ ! • . 

o.o o:s 1:o 1:5 ~:o 21~ 31o 
N e t  i n c o m e  

Figure 6. Uniform confidence bands for the income data. Food versus net income. Calculated using 
XploRe macro reguncb. 

3.8. Regression derivatives and quantiles 

There are a number of other functionals of the conditional distribution that are of 
interest for applications. The first derivative of the regression function measures the 
strength of the relationship between Y and X, while second derivatives can quantify 
the concavity or convexity of the regression function. Let rh(x) be any estimator of 
m(x) that has at lea~st r non-zero derivatives at x. Then m~')(x) can be estimated by 
the rth derivative of ~h(x), denoted ffz(r)(x). Miiller (1988) describes kernel estimators 
of m~r)(x) based on the convolution method of Gasser and Mfiller (1984); their 
method gives simpler bias expressions than the Nadaraya-Watson  estimator. An 
alternative technique is to fit a local polynomial (of order r) estimator, and take the 
coefficient on the rth term in (21), see Ruppert and Wand (1992). In each case, the 
resulting estimator is linear in ¥~, with bias of order h 2 and variance of order 
n-  lh-(2r + 1) 

Quantiles can also be useful. The median is an alternative - and robust - measure 
of location, while other quantiles can help to describe the spread of the conditional 
distribution. Let fr lx = =(Y) denote the conditional distribution of Y given X = x, and 
let c~(x) be the ~th conditional quantile, i.e. 

c~ = f rlx ==(Y) dy, (30) 

where for simplicity we assume this is unique. There are several methods for 
estimating c,(x). 

Firstly, let Zj = [W,j(x), Yj] r, where W,j(x) are kernel or nearest neighbor weights. 
We first sort {Zj}~.= 1 on the variable Y~, and find the largest index J such that 

J 
Z w.j(x) <. 

j = l  



Ch. 38: Applied Nonparametric Methods 2319 

Then let 

d,(x) = Yj. (31) 

Stute (1986) shows that d,(x) consistently estimates c,(x), with the same conver- 
gence rates as in ordinary nonparametric regression, see also Bhattacharya and 
Gangopadhyay (1990). When K is the uniform kernel and ~ = ½, this procedure 
corresponds to the running median discussed in H~irdle (1990, pp 69-71). A 
smoother estimator is obtained by also smoothing in the y direction, i.e. 

Provided K has at least r non-zero derivatives, the rth derivative of c~,(x) can be 
estimated by the rth derivative of d,(x). See Anand et al. (1993) and Robb et al. (1992) 
for applications. 

An alternative method of estimating conditional quantiles is through minimizing 
an appropriate loss function. This idea originated in Koenker and Bassett (1978). 
In particular, 

d,(x) = arg0min ~ Kh(X -- Xi)p~,(Y i -- 0), 
i=1  

(32) 

where p , ( y ) =  lYl + ( 2 ~ -  1)y, consistently estimates c~,(x). Computation of the 
estimator can be carried out by linear programming techniques. Chaudhuri (1991) 
provides asymptotic theory for this estimator in a general multidimensional 
context and for estimators of the derivatives of c~,(x). 

In neither (31) nor (32) is the estimator linear in Yi, although the asymptotic 
distribution of the estimators are determined by a linear approximation to them, 
i.e. the estimators are asymptotically normal. 

4. Optimality and bandwidth choice 

4.1. Optimali ty  

Let Q(h) be a performance criterion. We say that a bandwidth sequence h* is 
asymptotically optimal if 

Q(h*) P* 1, (33) 
infh~u.Q(h) 

as n --, ~ ,  where H,  is the range of permissible bandwidths. There are a number of 
alternative optimality criteria in use. Finally, we may be interested in the quadratic 
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loss of the estimator at a single point x, which is measured by the Mean squared 
error, MSE{Ihh(X)}. Secondly, we may be only concerned with a global measure of 
performance. In this case, we may consider the Integrated mean squared error, 
IMSE = IMSE[~h(x)]n(x)f(x)dx for some weighting function n(.). An alternative 
is the in-sample version of this, the averaged squared error 

dA(h) = n-  1 ~ [rhh(Xj) _ m(Xj)]2n(Xj). 
j = l  

(34) 

The purpose of n(.) may be to downweight observations in the tail of X's 
distribution, and thereby to eliminate boundary effects- see M/iller (1988) for a 
discussion. When h = O(n- 1/5), the squared bias and the variance of the kernel 
smoother have the same magnitude; this is the optimal order of magnitude for h 
with respect to all three criteria, and the corresponding performance measures are 
all O(n -4/5) in this case. 

Now let h = 7n-1/5, where 7 is a constant. The optimal constant balances the 
contributions to MSE from the squared bias and the variance respectively. From 
Theorem 2 we obtain an approximate mean squared error expansion, 

MSE[rhh(x)] ,.~ n- lh- 1 V(x) + hnB2(x). (35) 

and the bandwidth minimizing Equation 35 is 

F V(x) ]1/5n_1/5. 
h°(x) = L~x)J (36) 

Similarly, the optimal bandwidth with respect to IMSE is the same as in (36) with 
V = S V(x)n(x)f(x) dx and B 2 = SB2(x)~(x)f(x) dx replacing V(x) and B2(x). Unfortu- 
nately, in either case the optimal bandwidth depends on the unknown regression 
function and design density. We discuss in Section 4.2 below how one can obtain 
empirical versions of (36). 

The optimal local bandwidths can vary considerably with x, a point which is best 
illustrated for density estimation. Suppose that the density is standard normal and 
a standard normal kernel is used. In this case, as x ~ ~ ,  ho(x)~ ~ :  when data is 
sparse a wider window is called for. Also at x = + 1, ho(x ) = ~ ,  which reflects the 
fact that qT' = 0 at these points. Elsewhere, substantially, less smoothing is called for: 
at + 2.236, ho(x ) = 0.884n-1/5 (which is the minimum value of ho(x)). The optimal 
global bandwidth is 1.06n- 1/5 

Although allowing the bandwidth to vary with x dominates over the strategy of 
throughout choosing a single bandwidth, in practice this requires considerably more 
computation, and is rarely used in applications. 

By substituting h o in (35), we find that the optimal MSE and IMSE depend on 
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Table 2 
Kernel exchange rate. 

2321 

s*/s* Uniform Triangle Epanechnikov Quartic Gaussian 

Uniform 1.000 0.715 0.786 0.663 1.740 
Triangle 1.398 1.O00 1.099 0.927 2.432 
Epanechnikov 1.272 0.910 1.000 0.844 2.214 
Quartic 1.507 1.078 1.185 1.000 2.623 
Gaussian 0.575 0.411 0.452 0.381 1.000 

K only through 

T(K) = v~(K)#2(K ). (37) 

This functional can be minimized with respect to K using the calculus of variations, 
although it is necessary to first adopt a scale standardization of K - for details, see 
Gasser et al. (1985). A kernel is said to be optimal if it minimizes (37). The optimal 
kernel of order 2 is the Epanechnikov kernel given in Table 1. The third column of 
this table shows the loss in efficiency of other kernels in relation to this optimal one. 
Over a wide class of kernel estimators, the loss in efficiency is not that drastic; more 
important is the choice of h than the choice of K. 

Any kernel can be rescaled as K*(.) = s-  1K('/s) which of course changes the value 
of the kernel constants and hence ho. In particular, 

v2(K* ) = s -  lv2(K);  #~(K*) = s2#2(K). 

We can uncouple the scaling effect by using for each kernel K, that K* with scale 

s ,  = F v2(K*) ~ 1/5 

k  4(K) J 

for which p2(K*) = v2(K* ). Now suppose we wish to compare two smooths with 
kernels Kj and bandwidths hj respectively. This can be done by transforming both 
to their canonical scale, see Marron and Nolan (1989), and then comparing their 
s*. In Table 2 we give the exchange rate between various commonly used kernels. 
For example, the bandwidth of 0.2 used with a quartic kernel in Figure 2, translates 
into a bandwidth of 0.133 for a uniform kernel and 0.076 for a Gaussian kernel. 

4.2. Choice of smoothing parameter 

For each nonparametric regression method, one has to choose how much to smooth 
for the given dataset. In Section 3 we saw that k-NN, series, and spline estimation 
are asymptotically equivalent to the kernel method, so we describe here only the 
selection of bandwidth h for kernel regression smoothing. 
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4.2.1. Plug-in 

The asymptotic approximation given in (36) can be used to determine an optimal 
local bandwidth. We can calculate an estimated optimal bandwidth/~p~ in which the 
consistent estimators rh~,(x), ~2,(x), fh,(X) and f'h,(X) replace the unknown functions. 
We then use n~p,(x) to estimate re(x). Likewise, if a globally optimal bandwidth is 
required, one must substitute estimators of the appropriate average functionals. 
This procedure is generally fast and simple to implement. Its properties are 
examined in H/irdle et al. (1992a). 

However, this method fails to provide pointwise optimal bandwidths, when m(x) 
possesses less than two continuous derivatives. Finally, a major disadvantage of this 
procedure is that a preliminary bandwidth h* must be chosen for estimation ofm"(x) 
and the other quantities. 

4.2.2. Crossvalidation 

Crossvalidation is a convenient method of global bandwidth choice for many 
problems, and relies on the well established principle of out-of-sample predictive 
validation. 

Suppose that optimality with respect to dA(h ) is the aim. We must first replace 
d a(h) by a computable approximation to it. A naive estimate would be to just replace 
the unknown values m(Xj) by the observations Yj: 

p(h) = n-  1 ~ [thh(Xj) _ yj]27~(Xj)" 
j=~ 

This is called the resubstitution estimate. 
However, this quantity makes use of each observation twice-  the response 

variable Yj is used in rhh(Xj) to predict itself. Therefore, p(h) can be made arbitrarily 
small by taking h ~ 0 (when there are no tied X observations). This fact can be 
expressed via asymptotic expressions for the moments of p. Conditional on 
X~ . . . . .  X,, we have 

1 _21 E[p(h)] = E[da(h)] + - ~ ff2(Xi)7~(Xi) ~, Wni(Xi)(72(Xi)7~(Xi), (38) 
n i = l  n i = l  

and the third term is of the same order of magnitude as E[da(h)], but with a negative 
sign. Therefore, d a is wrongly underestimated and the selected bandwidth will be 
downward biased. 

The simplest way to avoid this problem is to remove the j th observation 

E Kh(Xj -- X,)Y, 
rh h j(Xj) - ~ i (39) 

" ~ Kh(Xj - Xi) 
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This leave-one-out estimate is used to form the so-called crossvalidation function 

CV(h) = n-  ~ ~ [rhhj(Xj) -- yj]2, (40) 
j = l  

which is to be minimized with respect to h. For  technical reasons, the minimum 
must be taken only over a restricted set of bandwidths such as H,  = [n - ° /5 - ° ,  
n-~/5 +~)], for some ( > 0. 

Theorem 5 

Assume that the conditions given in Hiirdle (1990, Theorem 5.1.1) hold. 
Then the bandwidth selection rule, "Choose h to minimize CV(h)" is asymptotically 

optimal with respect to dA(h ) and IMSE. 

Proof 

See Hiirdle and Marron (1985). 

The conditions include the restriction that f > 0 on the compact support of g, 
moment conditions on e, and a Lipschitz condition on K. However, unlike the 
plug-in procedure, m and f need not be differentiable (a Lipschitz condition is 
required, however). 

4.2.3. Other data driven selectors 

There are a number of different automatic bandwidth selectors that produce 
asymptotically optimal kernel smoothers. They are based on various ways of 
correcting the downwards bias of the resubstitution estimate of da(h). The function 
p(h) is multiplied by a correction factor that in a sense penalizes h's which are too 
small. The general form of this selector is 

6 ( h )  = n -  1 ~ [ ,hh (X, )  - -  L]2~(X,)~[W.,(X,)]. 
j = l  

where z, is the correction function with first-order Taylor expansion 

E(u) = 1 + 2u + O(/,12), (41) 

as u ~ 0. Some well known examples are: 

(i) Generalized crossvalidation (Craven and Wahba 1979; Li 1985), 

~ c v ( U )  = (1 - u)-2; 
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(ii) Akaike's information criterion (Akaike 1970) 

Ea,c(U) = exp 2u; 

(iii) Finite prediction error (Akaike 1974). 

W~VeE(U ) = (1 + u)/(1 -- U); 

(iv) Shibata's (1981) model selector, 

_=s(u) = 1 + 2u; 

(v) Rice's (1984) bandwidth selector, 

Er(u ) = (1 - 2u)- 1. 

H/irdle et al. (1988) show that the general criterion G(h) works in producing 
asymptotically optimal bandwidth selection, although they present their results for 
the equispaced design case only. 

The method of crossvalidation was applied to the car data set to find the optimal 
smoothing parameter h. A plot of the crossvalidation function is given in Figure 7. 

W. HEzrdle and O. Linton 
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Figure 7. The crossvalidation function CV(h) for the car data, Quartic kernel. Computation made with 
XploRe macro regcvl. 
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The computation is for the quartic kernel using the WARPing method, see H~irdle 
and Scott (1992). The minimal h = argminCV(h) is at 1922 which shows that in 
Figure 5a we used slightly too large a bandwidth. 

H~irdle et al. (1988) investigate how far the crossvalidation optimal h is from the 
true optimum, ho (that minimizes dA(h)). They show that for each optimization 
method, 

nl/l°(h~hoh~°)~N(O,0"z), 

n[da(h) - da(ho)] =~ C1Z 2, 

(42) 

(43) 

w h e r e  0 "2 and C 1 are both positive. The above methods are all asymptotically 
equivalent at this higher order of approximation. Another interesting result is that 
the estimated h and optimum ho are actually negatively correlated! Hall and 
Johnstone (1992) show how to correct for this effect in density estimation and in 
regression with uniform X's. It is still an open question how to improve this for the 
general regression setting we are considering here. 

There has been considerable research into finding improved methods of bandwidth 
selection that give faster rates of convergence in (42). Most of this work is in density 
estimation - see the recent review of Jones et al. (1992) for references. In this case, 

various w/n consistent bandwidth selectors have been suggested. The finite sample 
properties of these procedures are not well established, although Park and Turlach 
(1992) contains some preliminary simulation evidence. H~irdle et al. (1992a) con- 

struct a ~ consistent bandwidth selector for regression based on a bias reduction 
technique. 

5. Application to time series 

In the theoretical development described up to this point, we have restricted our 
attention to independent sampling. However, smoothing methods can also be 
applied to dependent data. Considerable resources are devoted to providing 
forecasts of macroeconomic entities such as GNP, unemployment and inflation, 
while the benefits of predicting asset prices are obvious. In many cases linear models 
have been the basis of econometric prediction, while more recently nonlinear models 
such as ARCH have become popular. Nonparametric methods can also be applied 
in this context, and provide a model free basis of predicting future outcomes. We 
focus on the issue of functional form, rather than that of correlation structure - this 
latter issue is treated, from a nonparametric point of view, in Brillinger (1980), see 
also Phillips (1991) and Robinson (1991). 

Suppose that we observe the vector time series {Zi}~= 1, where Z~ = (Y~, Xi), and 
Xg is strictly exogenous in the sense of Engle et al. (1983). It is convenient to assume 



2326 W. H?irdle and O. Linton 

that the process is stationary and mixing is as defined in Gallant and White (1988), 
which includes most linear processes, for example, although extensions to certain 
types of nonstationarity can also be permitted. We consider two distinct problems. 
Firstly, we want to predict Yg from its own past which we call autoregression. 
Secondly, we want to predict Y~ from X~. This problem we call regression with 
correlated errors. 

5.1. Autoregression 

For convenience we restrict our attention to the problem of predicting the scalar 
Yi+k given Y~ for some k > 0. The best predictor is provided by the autoregression 
function 

Mk(y) = E(Yi+kl Yi = Y). (44) 

More generally, one may wish to estimate the conditional variance of Y~+k from 
lagged values, 

Vk(y) = Var(Y~+kl Yi = Y). 

One can also estimate the predictive density fr,+~lr," These quantities can be 
estimated using any of the smoothing methods described in this chapter. See 
Robinson (1983) and Bierens (1987) for some theoretical results including conver- 
gence rates and asymptotic distributions. 

Diebold and Nason (1990), Meese and Rose (1991) and Mizrach (1992) estimate 
M(') for use in predicting asset prices over short horizons. In each case, a locally 
weighted regression estimator was employed with a nearest neighbor type window, 
while bandwidth was chosen subjectively (except in Mizrach (1992) where cross- 
validation was used). Not surprisingly, their published results concluded that there 
was little gain in predictive accuracy over a simple random walk. Pagan and Hong 
(1991), Pagan and Schwert (1990) and Pagan and Ullah (1988) estimate V(.) in order 
to evaluate the risk premium of asset returns. They used a variety of nonparametric 
methods including Fourier series and kernels. Their focus was on estimation rather 
than prediction, and their procedures relied on some parametric estimation. See also 
Whistler (1988) and Gallant et al. (1991). 

A scientific basis can also be found for choosing bandwidth in this sampling 
scheme. H~irdle and Vieu (1991) showed that crossvalidation also works in the 
autoregression problem - "choose" h = arg min CV(h) gives asymptotically optimal 
estimates. 

To illustrate this result we simulated an autoregressive process Yi = M(Yi_ 1) + e~ 
with 

M(y) = y e x p ( -  y2), (45) 
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Figure 8. The time regression function 2 M(y) = yexp(- -y  ) for the simulated example (thin line) and the 
kernel smoother (thick line). 

where the innovations ei were uniformly distributed over the interval ( -  1/2, 1/2). 
Such a process is a-mixing with geometrically decreasing ~(n) as shown by Doukhan 
and Ghind6s (1980) and Gy6rfi et al. (1990, Section 111.4.4). The sample size investi- 
gated was n = 100. The quartic kernel function in (3) was used. The minimum of 
CV(h) was h = 0.43, while the maximum of dA(h ) was at h = 0.52. The curve of dA(h) 
was very fiat for this example, since there was very little bias present. In Figure 8 
we compare the estimated curve with the autoregression function and find good 
agreement. 

5.2. Correlated errors 

We now consider the regression model 

Y~ = m(X~) + el, 

where X i is fixed in repeated samples and the errors el satisfy E(ei/Xi) = 0, but are 
autocorrelated. The kernel estimator tfih(X ) of re(x) is consistent under quite general 
conditions. In fact, its bias is the same as when the e~ are independent. However, the 
variance is generally affected by the dependency structure. Suppose that the error 
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process is MA(1), i.e. 

8i ~ ~li + OUt-l ,  

where us are iid with zero mean and variance tr 2. In this case, 

[ 1 Var[rhh(x)] = a  2 (1 +02) W2~ + 20 Z WniWni+l (46) 
i=1  i=1 

which is O(n- lh-1) ,  but differs from Theorem 2. If the explanatory variable were 
time itself (i.e. X~ = i/n, i = 1, . . . ,  n), then a further approximation is possible: 

1 2 Var[vhh(x)] ~ ~ a  (1 + 02 + 20)v2(K). 

Hart  and Wehrly (1986) develop MSE approximations in a regression model in 
which the error correlation is a general function p(.) of the time between 
observations. 

Unfortunately, crossvalidation fails in this case. Suppose that the errors are AR(1) 
with autoregression parameter close to one. The effect on the crossvalidation 
technique described in Section 4 must be drastic. The error process stays a long 
time on one side of the mean curve. Therefore, the bandwidth selection procedure 
gives undersmoothed estimates, since it interprets the little bumps of the error process 
as part of the regression curve. An example is given in H/irdle (1990, Figures 7.6 and 
7.7). 

The effect of correlation on the crossvalidation criterion may be mitigated by 
leaving out more than just one observation. For  the MA(1) process, leaving out the 
3 contiguous (in time) observations works. This "leave-out-some" technique is also 
sometimes appealing in an independent setting. See the discussion of H/irdle et al. 
(1988) and Hart  and Vieu (1990). It may also be possible to correct for this effect 
by "whitening" the residuals in (40), although this has yet to be shown. 

6. Applications to semiparametric estimation 

Semiparametric models offer a compromise between parametric modeling and the 
nonparametric approaches we have discussed. When data are high dimensional or 
if it is necessary to account for both functional form and correlation of a general 
nature, fully nonparametric methods may not perform well. In this case, semipara- 
metric models may be preferred. 

By a semiparametric model we mean that the density of the observable data, 
conditional on any ancillary information, is completely specified by a finite 
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dimensional parameter 0 and an unknown function G(.). The exhaustive monograph 
of Bickel et al. (1992) develops a comprehensive theory of inference for a large 
number of semiparametric models, although mostly within iid sampling. There are 
a number of reviews for econometricians including Robinson (1988b), Newey (1990) 
and Powell (this volume). 

In many cases, 0 is of primary interest. Andrews (1989) provides asymptotic 
theory for a general procedure designed to estimate 0 when a preliminary estimate 

of G is available. The method involves substituting (~ for G in an estimating 
equation derived, perhaps, from a likelihood function. Typically, the dependence of 
the estimated parameters 0 on the nonparametric estimators disappears asymptoti- 
cally, and 

x /n (0 -  0) =~ N(0, .(2o), (47) 

where -(20 > 0. 
Nevertheless, the small sample properties of 0 can depend quite closely on the 

way in which this preliminary step is carried out - see the Monte Carlo evidence 
contained in Engle and Gardiner (1976), Hsieh and Manski (1987), Stock (1989) and 
Delgado (1992). Some recent work has investigated analytically the small sample 
properties of semiparametric estimators. Carroll and H~irdle (1989), Cavanagh 
(1989), H~irdle et al. (1992b), Linton (199l, 1992, 1993) and Powell and Stoker (1991) 
develop asymptotic expansions of the form 

M S E [ ~ ( O -  0)] ~ 12 o + + - -  
ql(n,  h) q2(n, h)' 

(48) 

where ql and q2 both increase with n under restrictions on h(n). These expansions 
yield a formula for the optimal bandwidth similar to (36). An important finding is 
that different amounts of smoothing are required for 0 and for G; in particular, it 
is often optimal to undersmooth C, (by an order of magnitude) when the properties 
of 0 are at stake. 

The MSE expansions can be used to define a plug-in method of bandwidth choice 
for 0 that is based on second order optimality considerations. 

6.1. The  part ial ly  linear model  

Consider 

Yi = B T x i  + (a(Zi) + ~; X~ = 9(Z,) + q,, i = 1, 2 . . . . .  n (49) 

where ~b(.) and 9(') are of unknown functional form, while E(eilZi)  = E(rhlZi) = 0. If 
an inappropriate parametric model is fit to q~(.), the resulting MLE of/~ may be 
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inconsistent. This necessitates using nonparametric methods that allow a more 
general functional form, when it is needed. Engle et al. (1986) uses this model to 
estimate the effects of temperature on electricity demand, while Stock (1991) models 
the effect of the proximity of toxic waste on house prices. In both cases, the effect 
is highly nonlinear as the large number of covariates make a fully nonparametric 
analysis infeasible. See also Olley and Pakes (1991). This specification also arises 
from various sample selection models. See Ahn and Powell (1990) and Newey et al. 
(1990). 

Notice that 

Y~ - E(Y~IZ9 = f lTEs~-  E(XilZ~)] + e,. 

Robinson (1988a) constructed a semiparametric estimator of fl replacing o(Zi) = 
E(Xi/Zi)  and m(Zi) = E(Yi/Zi) by nonparametric kernel estimators 0h(ZI) and rhh(Zi) 
and then letting 

~=I ~=l{Xi--gh(Zi)){Xi--gh(Zi)}Tl-l ~" i=1  

In fact, Robinson modified this estimator by trimming out observations for which 
the marginal density of Z was small. Robinson's estimator satisfies (47), provided 
the dimensions of Z are not too high relative to the order of the kernel being used 
(provided m and g are sufficiently smooth). 

Linton (1992) establishes that the optimal bandwidth for/~ is O(n-2/9), when Z 
is scalar, and the resulting correction to the (asymptotic) MSE of the standardized 
estimator is O(n- 7/9). 

6.2. Heteroskedastic nonlinear regression 

Consider the following nonlinear regression model: 

Yi = z(Xi; fl) + e~, i = 1, 2, . . . ,  n, (50) 

where z('; fl) is known, while E(ei lXi)= 0 and Var(eilXi) = o 2 ( X i ) ,  where a2(.) is of 
unknown functional form. Efficient estimation of fl can be carried out using the 
pseudo-likelihood principle. Assuming that the e i are iid and normally distributed, 
the sample log-likelihood function is proportional to 

~e[/~; a~(.)-I = ~ [ r ,  - r (x , ; /~ ) ]aaa(x , )  - ~, (51) 
i=1  

where 0"2(") is known. In the semiparametric situation we replace a2(Xi) by a 
nonparametric estimator #2(Xi), and then let/~ minimize ~[f l ;  #2(.)]. 
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Carroll (1982) and Robinson (1987) examine the situation where z ( X ;  fl) = f l r X  
in which case 

(52) 

They establish (under iid sampling) that /~ is asymptotically equivalent to the 
infeasible GLS estimator based on (51). Remarkably, Robinson allows X to have 
unbounded support, yet did not need to trim out contributions from its tails: he 
used nearest neighbor estimators of a2(') that always average over the same number 
of observations. Extensions of this model to the multivariate nonlinear r(-; fl) case 
are considered in Delgado (1992), while Hidalgo (1992) allows both heteroskedasticity 
and serial correlation of unknown form. Applications include Melenberg and van 
Soest (1991), Altug and Miller (1992) and Whistler (1988). 

Carroll and H~irdle (1989), Cavanagh (1989) and Linton (1993) develop second 
order theory for these estimators. In this case, the optimal bandwidth is O(n-1/5) 
when X is scalar, making the correction to the (asymptotic) MSE O(n-4/5). 

6.3. S ing le  i n d e x  m o d e l s  

When the conditional distribution of a scalar variable Y, given the d-dimensional 
predictor variable X, depends on X only through the index f l r X ,  we say that this is 
a single index model. 

One example is the single index regression model in which E [ YJ X = x] = re(x) = 

9(xTfl) ,  but no other restrictions are imposed. Define the vector of average 
derivatives 

6 = E [ m ' ( X ) ]  = E [ 9 ' ( X r f l ) ] f l ,  (53) 

and note that 6 determines fl up to scale - as shown by Stoker (1986). Let f ( x )  denote 
the density of X and l be its vector of the negative log-derivatives (partial), 
l = - ~ log f / ~  x = - f ' / f  (l is also called the score  veetor) .  Under the assumptions 
on f given in Powell et al. (1989), we can write 

6 = E l m ' ( X ) ]  = E l i ( X ) Y ] ,  (54) 

and we estimate 6 by 3 = n-  12~ , ' l n (X , )Y i ,  w h e r e l n ( x )  ^, . = = - f n / f H ( x )  IS an estimator 
of l(x) based on a kernel density smoother with bandwidth matrix H. Furthermore, 
9(') is estimated by a kernel estimator Oh(') for which r R T x  1" is the right-hand k v i A i = l  

side data. 
Htirdle and Stoker (1989) show that 

x/-n(6-- 6) =~ N(0, Z',0, 
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where 2;~ = Var {I(X)[ Y - re(X)] + m'(X)}, while Oh converges at rate x / ~  - i.e. like 
a one dimensional function. Stoker (1991) proposed alternative estimators for 6 
based on first estimating the partial derivatives m'(x) and then averaging over the 
observations. A Monte Carlo comparison of these methods is presented in Stoker 
and Villas-Boas (1992). H/irdle et al. (1992b) develop a second order theory for 8: 
in the scalar case, the optimal bandwidth h is O(n-2/7) and the resulting correction 
to the MSE is O(n- 1/7). 

Another example is the binary choice model 

Yi = I(flr Xi + ui >10), (55) 

where (X, u) are iid. There are many treatments of this specification following the 
seminal paper of Manski (1975) - in which a slightly more general specification was 
considered. We assume also that u is independent of X with unknown distribution 
function F(.), in which case Pr[Yi = I IXI] = F(flrXi)= E(YIIflTxI), i.e. F ( . ) i s  a 
regression function. In fact, (55) is a special case of (53). Applications include Das 
(1990), Horowitz (1991), and Melenberg and van Soest (1991). 

Klein and Spady (1993) use the profile likelihood principle (see also Ichimura and 
Lee (1991)) to obtain (semiparametric) efficient estimates of ft. When F is known, 
the sample log-likelihood function is 

5¢{F(fl)} = ~" { Y~ In [F(flrX~)] + (1 - Y~)ln [1 - F(flTxi)] }. 
i = 1  

(56) 

For  given fl, let I~(flTx) be the nonparametric regression estimator of E(Y[ flTx). A 
feasible estimator/~ of fl is obtained as the minimizer of 

Lf[ff(f l)]  = ~ {Yi ln[ /?( f lrx i ) ]  + (1 - Yi)ln[1 - P(f lTxi) ]  }. 
i = 1  

(57) 

This can be found using standard numerical optimization techniques. The average 
derivative estimator can be used to provide initial consistent estimators of fl, 
although it is not in general efficient, see Cosslett (1987). Note that to establish 

x/~-consistency, it is necessary to employ bias reduction techniques such as higher 
order kernels as well as to trim out contributions from sparse regions. Note also 
that/~ is not as efficient as the MLE obtained from (56). 

We examined the performance of the average derivative estimator on a simulated 
dataset, where 

X ~ N(0, I2) 

P r (Y= 1 IX = x) = A(flrx) + 0.6~b'(flrx) 

/~ = (1,1) T, 
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Figure 9. For the simulated dataset ~r, X versus Y and two estimates of g(~rXi) are shown. The thick 
line shows the Nadaraya-Watson estimator with a bandwidth h = 0.3, while for the thin line h = 0.1 was 

chosen. 

while A and ~b are the standard logit and normal density functions respectively. A 
sample of size n = 200 was generated, and the bivariate density function was 
estimated using a Nadaraya-Watson  estimator with bandwidth matrix H = 
diag(0.99,0.78). This example is taken from H~irdle and Turlach (1992). The 
estimation of 6 and its asymptotic covariance matrix ,~  was done with XploRe 
macro adefit. For  this example 6 = (0.135, 0.135) T, and 

(0.124"~ ,~a = (0.188 0.036"] 

&= \0 .118J '  \0.036 0.206,/" 

Figure 9 shows the estimated regression function ~h(~rxi). 
These results allow us to test some hypotheses formally using a Wald statistic 

(see Stoker (1992), pp 53-54). In particular, to test the restriction R 6  = r o, the Wald 
statistic 

W =  n ( R 3 - -  ro)T(R~-,~RT) - 1 (R3- -  ro) 

is compared to a Z 2 (rank R) critical value. Table 3 gives some examples for this 
technique. 
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Table 3 
Wald statistics for some restrictions on 6. 

Restriction Value W d.f. P[;(2(d.f.) > W] 

61 = 62 = 0 25.25 2 0 
61 = 62 = 0.135 0.365 2 0.83 
61 = 6 2 0.027 1 0.869 

W. Hiirdle and O. Linton 

7. Conclusions 

The nonparamet r i c  methods  we have examined are especially useful when the 
variable over which the smooth ing  takes place is one dimensional ,  In  this case, the 
relat ionship can be plot ted and  evaluated, while the est imators  converge at rate 

For  higher d imensions  these methods  are less attractive due to the slower rate of 
convergence and  the lack of simple bu t  comprehensive graphs. In  these cases, there 
are a n u m b e r  of restricted structures that  can be employed including the nonpa ra -  
metric additive models of Hastie and  Tibshi rani  (1990), or semiparametr ic  models 
like the part ial ly l inear  and  index models examined in Section 6. 
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