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Takeaways for this part of class

1. fundamental notions of causal inference:
• causality
• structural objects
• identification

2. identification approaches:
• randomized experiments
• instrumental variables
• conditional independence
• difference in differences
• regression discontinuity

3. analog estimators
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Roadmap

Basic concepts

Origins: systems of structural equations

Alternative representations of linear IV

Treatment effects

Instrumental variables
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Causal and structural objects in economics

• Returns to schooling
• Elasticity of the tax base with respect to tax rates
• Effect of minimum wage on employment
• Effect of deworming pills on school attendance
• Price elasticity of demand for gasoline
• ...
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Correlation and causality

Do observable distributions tell us something about causality?
• College graduates earn x% more than high school graduates
• Countries with higher GDP have higher tax rates on average
• Minimum wage levels seem uncorrelated with unemployment levels across

time and space
• Gasoline consumption and gasoline price are negatively correlated over time
• ...
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Figure: correlation and causation
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Identification vs inference

Population distribution

Observations

Underlying structure

Identification

Estimation, inference

Model, 
identifying assumptions

Sampling
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Identification vs inference

• goal of econometrics:
learning interesting things (hopefully)
about economic phenomena from observations.
• two separate components of econometrics:

1. identification
2. estimation and inference
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Estimation and Inference

1. learning about a population distribution
2. from a finite number of observations.
3. examples:

• estimate a difference in expectations
using a difference in means

• perform inference using a t-test.
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Identification

1. learning about underlying structures, causal mechanisms
2. from a population distribution.
3. example:

identify a causal effect
by a difference in expectations
if we have a randomized experiment.

• identification inverts the mapping
• from underlying structures to a population distribution
• implied by a model and identifying assumptions.
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Causality

Practice problem
How would you define causality?
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“Pure” statistics

• causality is meaningless
• observations only tell us about correlations
• more generally, joint distributions
• disclaimer: few statisticians today would say this!
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Sciences

• Galileo Galilei: one of the first to follow experimental ideal
• full control of experimental circumstances.
• do the same thing
⇒ same thing happens to the outcomes you measure
• variation in experimental circumstances
⇒ difference in observed outcomes ≈ causal effect
• example:

• dropping a ball from different floors of the tower of Pisa
• different time till the ball hits the ground

• crucial component:
external intervention ( “exogenous variation”)
⇒ allows to interpret correlation as causation
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Social and biological sciences

• economics is not physics
• this version of the experimental ideal is not very useful
• reason: many unobserved, and unknown, factors which we cannot hope to

control
• ⇒ can never replicate experimental circumstances fully
• there is “unobserved heterogeneity.”
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Social and biological sciences ctd

• not all is lost, however
• can still hope create experimental circumstances which are the same on

average
• this is the idea of a randomized experiment!
• randomly pick treatment and control groups
⇒ they are identical on average.
• “compare apples with apples.”
• many settings of interest in economics:

not possible to run experiments
• but: definition of causality is intimately tied to randomized experiment,

hypothetical or actual
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Recap

• Framework of classic probability theory:
• Does not allow to talk about causality,
• only joint distributions.

• Causality in the sciences:
• Additional concept:
• External intervention / exogeneous variation
• ⇒ experiments.

• Causality in econometrics, biostatistics,...:
• Additional concept:
• Unobserved heterogeneity.
• ⇒ randomized experiments
• (or “quasi-experiments”)
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Structural objects

Practice problem
How would you define “structural?”
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My preferred definition

• An object is structural, if it is invariant across relevant counterfactuals.
• Example: dropping a ball from tower of Pisa

• acceleration is the same, no matter which floor you drop it from
• also the same if you do this on the Eiffel tower
• time to ground would not be the same
• acceleration is not the same if you do this on the moon
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Possibly structural objects

• “economic primitives”
• preferences
• technologies
• assumed to be invariant across policy changes

• derived objects
• demand function, as supply, and thus price, varies
• more generally causal effects, as treatment varies
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Another common use for “structural”

• full specification of parametric forms for economic primitives
• assumptions strong enough to identify these primitives
• somewhat misleading terminology:

1. less ambitious approaches with weaker assumptions
can also identify structural objects

2. if assumptions for full identification of economic primitives are violated
then the objects identified are not structural.
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Origins: systems of structural equations

• econometrics pioneered by “Cowles commission” starting in the 1930s
• they were interested in demand (elasticities) for agricultural goods
• introduced systems of simultaneous equations

• outcomes as equilibria of some structural relationships
• goal: recover the slopes of structural relationships
• from observations of equilibrium outcomes and exogenous shifters
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System of structural equations

Y = A ·Y+B ·Z+U,

• Y: k-dimensional vector of equilibrium outcomes
• Z: l-dimensional vector of exogenous variables
• A: unknown k×k matrix of coefficients of interest
• B: unknown k× l matrix
• U: further unobserved factors affecting outcomes
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Example: supply and demand

Y = (P,Q)
P= A12 ·Q+B1 ·Z+U1 demand

Q= A21 ·P+B2 ·Z+U2 supply

• demand function: relates prices to quantity supplied
and shifters Z and U1 of demand
• supply function relates quantities supplied to prices

and shifters Z and U2 of supply.
• does not really matter which of the equations puts prices on the “left hand side.’
• price and quantity in market equilibrium: solution of this system of equations.
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Reduced form

• solve equation Y = A ·Y+B ·Z+U
for Y as a function of Z and U
• bring A ·Y to the left hand side,

pre-multiply by (I−A)−1⇒

Y = C ·Z+η “reduced form”

C := (I−A)−1 ·B reduced form coefficients

η := (I−A)−1 ·U

• suppose E[U|Z] = 0 (ie., Z is randomly assigned)
• then we can identify C from

E[Y|Z] = C ·Z.
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Exclusion restrictions

• suppose we know C
• what we want is A, possibly B
• problem: k× l coefficients in C= (I−A)−1 ·B

k× (k+ l) coefficients in A and B
• ⇒ further assumptions needed
• exclusion restrictions: assume that some of the coefficients in B or A are = 0.
• Example: rainfall affects grain supply but not grain demand
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Supply and demand continued

• suppose Z is (i) random, E[U|Z] = 0
• and (ii) “excluded” from the demand equation
⇒ B11 = 0
• by construction, diag(A) = 0
• therefore

Cov(Z,P) = Cov(Z,A12 ·Q+B1 ·Z+U1) = A12 ·Cov(Z,Q),

• ⇒ the slope of demand is identified by

A12 =
Cov(Z,P)
Cov(Z,Q) .

• Z is an instrumental variable
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Alternative ways of writing the linear IV estimand
• Linear triangular system: Y,D ∈ R,

Y = β0+β1D+U
D= γ0+ γ1Z+V.

• Relation to system of structural equations:
• Y equation: structural equation (say first line in system)
• D equation: reduced form relationship

• Exogeneity conditions (subsume exclusion, randomization), relevance
condition:

Cov(Z,U) = 0 Cov(Z,V) = 0
Cov(Z,D) = γ1Var(Z) 6= 0.

• Under these conditions,
β1 =

Cov(Z,Y)
Cov(Z,D) .
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Two-stage least squares

• Let D̂ be the predicted value from a first stage regression,

D̂= γ0+ γ1Z,

• and regress Y = β0+β1D+U on D̂,

Y = α0+α1D̂+ Ũ.

• Then, since Cov(Z,U) = 0,

α1 =
Cov(D̂,Y)
Var(D̂)

=
γ1Cov(Z,Y)

γ2
1 Var(Z)

=
Cov(Z,Y)
Cov(Z,D) = β1.

• ⇒ two-stage least squares identifies β1!
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Control function
• V is the residual of a first stage regression of D on Z.
• Consider a regression of Y on D and V,

Y = δ0+δ1D+δ2V+W

• Partial regression formula:
• δ1 is the coefficient of a regression of Ỹ on D̃ (or of Y on D̃),
• where Ỹ , D̃ are the residuals of regressions on V.

• By construction:

D̃= γ0+ γ1Z = D̂
Ỹ = β0+β1D̃+ Ũ

• Cov(Z,U) = Cov(Z,V) = 0 implies Cov(D̃, Ũ) = 0, and thus

δ1 = β1.
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Recap

• Three numerically equivalent estimands:
1. The slope

Cov(Z,Y)/Cov(Z,D).

2. The two-stage least squares slope from the regression

Y = α0+α1D̂+ Ũ,

where Ũ= (β1V+U), and D̂ is the first stage predicted value D̂= γ0+ γ1Z.
3. The slope of the regression with control

Y = δ0+δ1D+δ2V+W,

where the control function V is given by the first stage residual, V = D− γ0− γ1Z.
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Empirical example

• Aizer, A. and Doyle, J. J. (2015). Juvenile incarceration, human capital, and
future crime: Evidence from randomly assigned judges. The Quarterly Journal
of Economics, 130(2):759–803.
• Judges (within days, courts) randomly assigned to cases.
• Use judge-specific incarceration rate as instrument for juvenile incarceration.
• Finding: Juvenile incarceration reduces high school graduation, increases adult

crime.
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The mean initial judge custody rate is 0.09, whereas the mean of
the dependent variable in this first-stage model—an indicator
that the juvenile was ever incarcerated—is 0.23. All standard
errors are clustered at the community level.

The results of the first stage (Table III) show that the judge’s
incarceration rate is highly predictive of whether an individual
will ever be incarcerated as a juvenile. Including additional con-
trols in columns (2) and (3) does not change the estimated effect of
being assigned to a strict judge in one’s first court appearance,
consistent with the randomness of judge assignment. Column (3),
which includes the full set of controls, reports a coefficient of 1.06.
The coefficient is not statistically significantly different from 1,
meaning that if a juvenile is assigned to a judge that is 10% more
likely to incarcerate other juveniles in their initial case, he is 10%
more likely to be incarcerated as well.27 In particular, the esti-
mate suggests that a 2 standard deviation increase in the judge

TABLE III

FIRST STAGE

(1) (2) (3)
Dependent variable: juvenile
incarcerations OLS

First judge’s leave-out mean incarceration
rate among first cases

1.103 1.082 1.060
(0.102) (0.095) (0.097)

Demographic controls No Yes Yes
Court controls No No Yes

Observations 37,692
Mean of dependent variable 0.227

Notes. This table reports the first-stage relationship between juvenile incarceration and the instru-
ment: the judge’s incarceration rate using the linked Chicago Public School–Juvenile Court of Cook
County data including cases from 1990–2000 as described in the text. All models include commu-
nity!weapons-offense! year-of-offense fixed effects. Demographic controls include indicators for four
age-at-offense categories, four race/ethnicity categories, sex, special education status, and the 2000 U.S.
census tract family poverty rate. Court controls include nine offense categories, indictors for seven risk-
assessment index categories, and whether the first judge assigned was missing. Standard errors are
reported in the parentheses and are clustered at the community level.

27. A coefficient greater than 1 is possible because the incarceration rate (Zj(i))
applies to whether the juvenile was incarcerated in his first case, whereas the en-
dogenous variable for which we instrument is whether the juvenile was ever incar-
cerated as a youth—for his first case or any subsequent cases.
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TABLE IV

JUVENILE INCARCERATION AND HIGH SCHOOL GRADUATION

Dependent variable: graduated high school
(1) (2) (3) (4) (5) (6) (7)

Full CPS sample Juvenile court sample

OLS OLS
Inverse propensity

score weighting OLS OLS 2SLS 2SLS

Juvenile incarceration !0.389 !0.292 !0.391 !0.088 !0.073 !0.108 !0.125
(0.0066) (0.0065) (0.0055) (0.0043) (0.0041) (0.044) (0.043)

Demographic controls No Yes Yes No Yes No Yes
Court controls N/A N/A N/A No Yes No Yes
Observations 440,797 440,797 420,033 37,692
Mean of dependent variable 0.428 0.428 0.433 0.099

Notes. This table reports the relationship between juvenile incarceration and graduation from Chicago Public Schools. Columns (1)–(3) include all students in Chicago Public
Schools in eighth grade during 1990–2006 and at least age 25 by 2008. Columns (1) and (2) include community fixed effects, while column (2) also includes indicators for race, sex,
special education status, each year of birth, and the 2000 U.S. census tract family poverty rate. Column (3) used the same controls and community indicators to calculate the
propensity score using a probit model, estimated on a subsample where probit estimation is possible (where there is variation in juvenile incarceration within cells). Columns (4)–(7)
use the linked Chicago Public School–Juvenile Court of Cook County data including cases from 1990–2000 as described in the text. These models include community"weapons-
offense" year-of-offense fixed effects. Demographic controls include those listed for column (2). Court controls include nine offense categories, indictors for seven risk-assessment
index categories, and whether the first judge assigned was missing. Standard errors are reported in the parentheses and are clustered at the community level. The propensity score
standard errors were calculated using 200 bootstrap replications.
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TABLE V

JUVENILE INCARCERATION AND ADULT CRIME

Dependent variable: entered adult prison by age 25
(1) (2) (3) (4) (5) (6) (7)

Full CPS sample Juvenile court sample

OLS OLS
Inverse propensity

score weighting OLS OLS 2SLS 2SLS

Juvenile incarceration 0.407 0.350 0.219 0.200 0.155 0.260 0.234
(0.0082) (0.0064) (0.013) (0.0072) (0.0073) (0.073) (0.076)

Demographic controls No Yes Yes No Yes No Yes
Court controls N/A N/A N/A No Yes No Yes
Observations 440797 440797 420033 37692
Mean of dependent variable 0.067 0.067 0.057 0.327

Notes. This table reports the relationship between juvenile incarceration and imprisonment in an adult facility by the age of 25. Columns (1)–(3) include all students in Chicago
Public Schools in eighth grade during 1990–2006 and at least age 25 by 2008. Columns (1) and (2) include community fixed effects, while column (2) also includes indicators for race,
sex, special education status, each year of birth, and the 2000 U.S. census tract family poverty rate. Column (3) used the same controls and community indicators to calculate the
propensity score using a probit model, estimated on a subsample where probit estimation is possible (where there is variation in juvenile incarceration within cells). Columns (4)–(7)
use the linked Chicago Public School–Juvenile Court of Cook County–Illinois Department of Corrections data including juvenile cases from 1990–2000 as described in the text.
These models include community!weapons-offense! year-of-offense fixed effects. Demographic controls include those listed for column (2). Court controls include nine offense
categories, indictors for seven risk-assessment index categories, and whether the first judge assigned was missing. Standard errors are reported in the parentheses and are
clustered at the community level. The propensity score standard errors were calculated using 200 bootstrap replications.
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Remarks

• historically, applied researchers have not been very careful about choosing Z
for which
(i) randomization and (ii) exclusion restriction are well justified.
• since the 1980s, more emphasis on credibility of identifying assumptions
• some additional problematic restrictions we imposed:

1. linearity
2. constant (non-random) slopes
3. heterogeneity is k dimensional and enters additively

• ⇒ causal effects assumed to be the same for everyone
• next: framework which does not impose this
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Treatment effects and potential outcomes

• coming from biostatistics / medical trials
• potential outcome framework: answer to “what if” questions
• two “treatments:” D= 0 or D= 1
• eg. placebo vs. actual treatment in a medical trial
• Yi person i’s outcome

eg. survival after 2 years
• potential outcome Y0

i :
what if person i would have gotten treatment 0
• potential outcome Y1

i :
what if person i would have gotten treatment 1
• question to you: is this even meaningful?
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• causal effect / treatment effect for person i :
Y1
i −Y0

i .
• average causal effect / average treatment effect:

ATE = E[Y1−Y0],

• expectation averages over the population of interest
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The fundamental problem of causal inference

• we never observe both Y0 and Y1 at the same time
• one of the potential outcomes is always missing from the data
• treatment D determines which of the two we observe
• formally:

Y = D ·Y1+(1−D) ·Y0.
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Selection problem

• distribution of Y1 among those with D= 1
need not be the same as the distribution of Y1 among everyone.
• in particular

E[Y|D= 1] = E[Y1|D= 1] 6= E[Y1]

E[Y|D= 0] = E[Y0|D= 0] 6= E[Y0]

E[Y|D= 1]−E[Y|D= 0] 6= E[Y1−Y0] = ATE.
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Randomization

• no selection⇔ D is random
(Y0,Y1)⊥ D.

• in this case,

E[Y|D= 1] = E[Y1|D= 1] = E[Y1]

E[Y|D= 0] = E[Y0|D= 0] = E[Y0]

E[Y|D= 1]−E[Y|D= 0] = E[Y1−Y0] = ATE.

• can ensure this by actually randomly assigning D
• independence⇒ comparing treatment and control actually compares “apples

with apples”
• this gives empirical content to the “metaphysical” notion of potential

outcomes!
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Empirical example

• Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More
Employable Than Lakisha and Jamal? A Field Experiment on Labor Market
Discrimination. American Economic Review, 94(4):991–1013.
• Randomly assign names which are statistically “white” or “black” to resumes

which are sent out as job applications.
• Estimate causal effect on likelihood of getting invited to a job interview.
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rate for similar improvements in their creden-
tials. African-Americans with higher-quality re-
sumes receive a callback 6.7 percent of the time,
compared to 6.2 percent for African-Americans
with lower quality resumes. This is only a 0.51-
percentage-point, or 8-percent, difference and
this difference is not statistically significant
(p ! 0.6084).
Instead of relying on the subjective quality

classification, Panel B directly uses resume
characteristics to classify the resumes. More
specifically, we use a random subsample of
one-third of the resumes to estimate a probit
regression of the callback dummy on the resume
characteristics listed in Table 3. We further con-
trol for a sex dummy, a city dummy, six occu-
pation dummies, and a vector of job
requirements as listed in the employment ads.34
We then use the estimated coefficients on the
resume characteristics to rank the remaining
two-thirds of the resumes by predicted callback.
In Panel B, we classify as “high” those resumes
that have above-median-predicted callback;
similarly, we classify as “low” those resumes

that have below-median-predicted callback. As
one can see from Panel B, qualitatively similar
results emerge from this analysis.WhileAfrican-
Americans do appear to significantly benefit
from higher-quality resumes under this alterna-
tive classification, they benefit less than Whites.
The ratio of callback rates for high- versus
low-quality resumes is 1.60 for African Amer-
icans, compared to 1.89 for Whites.
In Table 5, we directly report the results of

race-specific probit regressions of the callback
dummy on resume characteristics. We, how-
ever, start in column 1 with results for the full
sample of sent resumes. As one can see, many
of the resume characteristics have the expected
effect on the likelihood of a callback. The ad-
dition of an e-mail address, honors, and special
skills all have a positive and significant effect
on the likelihood of a callback.35 Also, more
experienced applicants are more likely to get
called back: at the average number of years of
experience in our sample (eight years), each

34 See Section III, subsection D, for more details on these
occupation categories and job requirements.

35 Note that the e-mail address dummy, because it is
close to perfectly correlated with the subjective resume-
quality variable, may in part capture some other unmeasured
resume characteristics that may have led us to categorize a
given resume as higher quality.

TABLE 4—AVERAGE CALLBACK RATES BY RACIAL SOUNDINGNESS OF NAMES AND RESUME QUALITY

Panel A: Subjective Measure of Quality
(Percent Callback)

Low High Ratio Difference (p-value)
White names 8.50 10.79 1.27 2.29

[1,212] [1,223] (0.0557)
African-American names 6.19 6.70 1.08 0.51

[1,212] [1,223] (0.6084)

Panel B: Predicted Measure of Quality
(Percent Callback)

Low High Ratio Difference (p- value)
White names 7.18 13.60 1.89 6.42

[822] [816] (0.0000)
African-American names 5.37 8.60 1.60 3.23

[819] [814] (0.0104)

Notes: Panel A reports the mean callback percents for applicant with a White name (row 1) and African-American name (row 2)
depending on whether the resume was subjectively qualified as a lower quality or higher quality. In brackets is the number of
resumes sent for each race/quality group. The last column reports the p-value of a test of proportion testing the null hypothesis that
the callback rates are equal across quality groups within each racial group. For Panel B, we use a third of the sample to estimate
a probit regression of the callback dummy on the set of resume characteristics as displayed in Table 3. We further control for a sex
dummy, a city dummy, six occupation dummies, and a vector of dummy variables for job requirements as listed in the employment
ad (see Section III, subsection D, for details). We then use the estimated coefficients on the set of resume characteristics to estimate
a predicted callback for the remaining resumes (two-thirds of the sample). We call “high-quality” resumes the resumes that rank
above the median predicted callback and “low-quality” resumes the resumes that rank below the median predicted callback. In
brackets is the number of resumes sent for each race/quality group. The last column reports the p-value of a test of proportion testing
the null hypothesis that the callback percents are equal across quality groups within each racial group.
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Relation to linear structural equations?
• Linear structural equations

are a special case of treatment effect framework.
• Suppose

Y = α +βD+U,
• where this equation is “structural.”
⇔ Coefficients and the residual stay the same
if treatment is changed.
• Then

Y0 = α +U
Y1 = α +β +U,

• and ATE = β .
• Note: Causal effects are the same for everyone in the linear framework.
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Nonlinear structural equations

• without imposing linearity / restrictions on the dimension of heterogeneity:

Y = g(D,U).

• equivalent to potential outcomes
• potential outcomes notation: more compact
• structural function notation: more explicit

which determinants are held constant to define causal effects in more complex
settings? Eg.

Y = g(D,X,W,U)
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Instrumental variables

• recall: simultaneous equations models with exclusion restrictions
• ⇒ instrumental variables

β =
Cov(Z,Y)
Cov(Z,D) .

• we will now give a new interpretation to β

• using the potential outcomes framework, allowing for heterogeneity of
treatment effects
• “Local Average Treatment Effect” (LATE)
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6 assumptions

Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using
instrumental variables. Journal of the American Statistical Association,
91(434):444–455.

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y1+(1−D) ·Y0

3. D= Z ·D1+(1−Z) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y0,Y1,D0,D1)

6. Cov(Z,D) 6= 0
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Discussion of assumptions
Generalization of randomized experiment
• D is “partially randomized”
• instrument Z is randomized
• D depends on Z, but is not fully determined by it

1. Binary treatment and instrument:
both D and Z can only take two values
results generalize, but things get messier without this

2. Potential outcome equation for Y: Y = D ·Y1+(1−D) ·Y0

• exclusion restriction: Z does not show up in the equation determining the
outcome.

• “stable unit treatment values assumption” (SUTVA): outcomes are not affected by
the treatment received by other units.
excludes general equilibrium effects or externalities.
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3. Potential outcome equation for D: D= Z ·D1+(1−Z) ·D0

SUTVA; treatment is not affected by the instrument values of other units
4. No defiers: D1 ≥ D0

• four possible combinations for the potential treatments (D0,D1) in the binary
setting

• D1 = 0,D0 = 1, is excluded
• ⇔monotonicity
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Table: No defiers

D0 D1

Never takers (NT) 0 0
Compliers (C) 0 1
Always takers (AT) 1 1
Defiers 1 0
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5. Randomization: Z ⊥ (Y0,Y1,D0,D1)

• Z is (as if) randomized.
• in applications, have to justify both exclusion and randomization
• no reverse causality, common cause!

6. Instrument relevance: Cov(Z,D) 6= 0
• guarantees that the IV estimand is well defined
• there are at least some compliers
• testable
• near-violation: weak instruments
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Graphical illustration

Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1
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Illustration explained

• 3 groups, never takers, compliers, and always takers
• by randomization of Z:

each group represented equally given Z = 0 / Z = 1
• depending on group:

observe different treatment values and potential outcomes.
• will now take the IV estimand

Cov(Z,Y)
Cov(Z,D)

• interpret it in terms of potential outcomes:
average causal effects for the subgroup of compliers
• idea of proof:

take the “top part” of figure 55, and subtract the “bottom part.”
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Preliminary result:

If Z is binary, then
Cov(Z,Y)
Cov(Z,D) =

E[Y|Z = 1]−E[Y|Z = 0]
E[D|Z = 1]−E[D|Z = 0] .

Practice problem
Try to prove this!
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Proof

• Consider the covariance in the numerator:

Cov(Z,Y) = E[YZ]−E[Y] ·E[Z]
= E[Y|Z = 1] ·E[Z]− (E[Y|Z = 1] ·E[Z]−E[Y|Z = 0] ·E[1−Z]) ·E[Z]

= (E[Y|Z = 1]−E[Y|Z = 0]) ·E[Z] ·E[1−Z].

• Similarly for the denominator:

Cov(Z,D) = (E[D|Z = 1]−E[D|Z = 0]) ·E[Z] ·E[1−Z].

• The E[Z] ·E[1−Z] terms cancel when taking a ratio
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The “LATE” result

E[Y|Z = 1]−E[Y|Z = 0]
E[D|Z = 1]−E[D|Z = 0] = E[Y1−Y0|D1 > D0]

Practice problem
Try to prove this!

Hint: decompose E[Y|Z = 1]−E[Y|Z = 0] in 3 parts
corresponding to our illustration

54 / 70



Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1
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Proof
• “top part” of figure:

E[Y|Z = 1] = E[Y|Z = 1,NT] ·P(NT|Z = 1)
+E[Y|Z = 1,C] ·P(C|Z = 1)
+E[Y|Z = 1,AT] ·P(AT|Z = 1)

= E[Y0|NT] ·P(NT)+E[Y1|C] ·P(C)+E[Y1|AT] ·P(AT).

• first equation relies on the no defiers assumption
• second equation uses the exclusion restriction and randomization assumptions.

• Similarly

E[Y|Z = 0] = E[Y0|NT] ·P(NT)+
E[Y0|C] ·P(C)+E[Y1|AT] ·P(AT).
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proof continued:
• Taking the difference, only the complier terms remain, the others drop out:

E[Y|Z = 1]−E[Y|Z = 0] =
(
E[Y1|C]−E[Y0|C]

)
·P(C).

• denominator:

E[D|Z = 1]−E[D|Z = 0] = E[D1]−E[D0]

= (P(C)+P(AT))−P(AT) = P(C).

• taking the ratio, the claim follows. �
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Recap

LATE result:
• take the same statistical object economists estimate a lot
• which used to be interpreted as average treatment effect
• new interpretation in a more general framework
• allowing for heterogeneity of treatment effects
• ⇒ treatment effect for a subgroup

Practice problem
Is the LATE, E[Y1−Y0|D1 > D0], a structural object?
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Empirical example

• Angrist, J.D. and Krueger, A.B. (1991). Does compulsory school attendance
affect schooling and earnings? The Quarterly Journal of Economics,
106(4):979–1014.
• compare individuals born in different quarters of the year
• school start age and structure compulsory schooling laws
• ⇒ people born late in the year have to stay in school longer
• quarter of birth as an instrument for educational attainment in estimates of

returns to schooling
• estimates effect for those affected by compulsory schooling laws

Practice problem
Who do you think are the compliers for the quarter of birth instrument?
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TABLE III
PANEL A: WALD ESTIMATES FOR 1970 CENSUS-MEN BORN 1920-1929a

(1) (2) (3)
Born in Born in 2nd, Difference

1st quarter 3rd, or 4th (std. error)
of year quarter of year (1) – (2)

In (wkly. wage) 5.1484 5.1574 –0.00898
(0.00301)

Education 11.3996 11.5252 –0.1256
(0.0155)

Wald est. of return to education 0.0715
(0.0219)

OLS return to educationb 0.0801
(0.0004)

Panel B: Wald Estimates for 1980 Census—Men Born 1930-1939

(1) (2) (3)
Born in Born in 2nd, Difference

1st quarter 3rd, or 4th (std. error)
of year quarter of year (1) – (2)

In (wkly. wage)

Education

Wald est. of return to education

OLS return to education

 

5.8916 5.9027 –0.01110
(0.00274)

12.6881 12.7969 –0.1088
(0.0132)
0.1020

(0.0239)
0.0709

(0.0003)

a. The sample size is 247,199 in Panel A, and 327,509 in Panel B. Each sample consists of males born in the
United States who had positive earnings in the year preceding the survey. The 1980 Census sample is drawn
from the 5 percent sample, and the 1970 Census sample is from the State, County, and Neighborhoods 1 percent
samples.

b.The OLS return to education was estimated from a bivariate regression of log weekly earnings on years of
education.

estimate in this case because unobserved earnings determinants
(e.g., ability) are likely to be uniformly distributed across people
born on different dates of the year. 15

The last row of each panel in Table III provides the OLS

15. We note that our procedure will slightly understate the return to education
because first-quarter births, whose birthdays occur midterm, are more likely to
attend some schooling beyond their last year completed. Consequently, the differ-
ence in years of school attended between first and later quarters of birth is less than
the difference in years of school completed. Since the difference in completed
education rather than the difference in years of school attended appears in the
denominator of the Wald estimator, our estimate is biased downward. In practice,
however, this is a small bias because the difference in completion rates is small.
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An alternative approach: Bounds

• keep the old structural object of interest: average treatment effect
• but analyze its identification in the more general framework with

heterogeneous treatment effects
• in general: we can learn something, not everything
• ⇒ bounds / “partial identification”

Manski, C. (2003). Partial identification of probability distributions. Springer Verlag.
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Same assumptions as before

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y1+(1−D) ·Y0

3. D= Z ·D1+(1−Z) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y0,Y1,D0,D1)

6. Cov(Z,D) 6= 0

additionally:
7. Y is bounded, Y ∈ [0,1]
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Decomposing ATE in known and unknown components

• decompose E[Y1]:

E[Y1] = E[Y1|NT] ·P(NT)+E[Y1|C∨AT] ·P(C∨AT).

• terms that are identified:

E[Y1|C∨AT] = E[Y|Z = 1,D= 1]
P(C∨AT) = E[D|Z = 1]

P(NT) = E[1−D|Z = 1]

and thus
E[Y1|C∨AT] ·P(C∨AT) = E[YD|Z = 1].
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• Data tell us nothing about is E[Y1|NT].
Y1 is never observed for never takers.
• but we know, since Y is bounded, that

E[Y1|NT] ∈ [0,1]

• Combining these pieces, get upper and lower bounds on E[Y1]:

E[Y1] ∈ [E[YD|Z = 1],
E[YD|Z = 1]+E[1−D|Z = 1]].
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• For Y0, similarly

E[Y0] ∈ [E[Y(1−D)|Z = 0],
E[Y(1−D)|Z = 0]+E[D|Z = 0]].

• Data are uninformative about E[Y0|AT].

Practice problem
Show this.
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Combining to get bounds on ATE

• lower bound for E[Y1], upper bound for E[Y0]⇒ lower bound on E[Y1−Y0]

E[Y1−Y0]≥ E[YD|Z = 1]−E[Y(1−D)|Z = 0]−E[D|Z = 0]

• upper bound for E[Y1], lower bound for E[Y0]
⇒ upper bound on E[Y1−Y0]

E[Y1−Y0]≤ E[YD|Z = 1]−E[Y(1−D)|Z = 0]+E[1−D|Z = 1]
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Between randomized experiments and nothing

• bounds on ATE:

E[Y1−Y0] ∈ [E[YD|Z = 1]−E[Y(1−D)|Z = 0]−E[D|Z = 0],
E[YD|Z = 1]−E[Y(1−D)|Z = 0]+E[1−D|Z = 1]].

• length of this interval:

E[1−D|Z = 1]+E[D|Z = 0] = P(NT)+P(AT) = 1−P(C)
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• Share of compliers→ 1
• interval (“identified set”) shrinks to a point
• In the limit, D= Z
• thus (Y1,Y0)⊥ D – randomized experiment

• Share of compliers→ 0
• length of the interval goes to 1
• In the limit the identified set is the same as without instrument
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Supplementary readings

• Applied microeconomics perspective:
Angrist, J. D. and Pischke, J. S. (2009). Mostly harmless econometrics: an
empiricist’s companion. Princeton Univ Press.
• Textbook focusing on binary treatments, experiments and conditional

independence:
Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social,
and biomedical sciences. Cambridge University Press.
• Principled treatment of (partial) identification:

Manski, C. (2003). Partial identification of probability distributions. Springer
Verlag.
• Theoretical computer scientist on the notion of causality:

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge
University Press.
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