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In this problem, you are asked to implement some simulations and estimators in R, or in
Python. Your code should run from start to end in one execution, producing all the output.
Output and discussion of findings should be integrated in a report generated in R-Markdown,
or from a Jupyter Notebook. Figures and tables should be clearly labeled and interpretable.
The findings should be discussed in the context of the theoretical results that we derived in
class.

1. In this problem, you are asked to simulate data for a Bernoulli bandit problem, where

Dt ∈ {1, . . . , k}, Yt = Y Dt , Y d
t ∼ Ber(θd).

and treatment is assigned using Thompson sampling with a uniform prior, (θ1, . . . , θk) ∼
U([0, 1]k). Recall that Thompson sampling assigns

Dt = argmax
d

θ̂dt ,

where θ̂t is a draw from the posterior after period t− 1.

(a) Set up a function which accepts a sample size T and a k-vector (θ1, . . . , θk) as
its arguments, and returns a history (Dt, Yt)

T
t=1 generated based on the Bernoulli

bandit model and Thompson sampling.

(b) Write a second function which takes the same arguments, plus a number of repli-
cations R, and evaluates the first function R times (using parallel computing; for
instance the future package).

This function should return 4 vectors of length T : The averages of Yt, θ
Dt , 1(Dt =

argmax d θ
d), and max θd − θDt , for each time periord t.

(c) Pick a fixed vector of parameters (θ1, . . . , θk) and a time horizon T and use the
second function to plot the average (across replications) of cumulative average
regret

1
T

∑
1≤t≤T

[(
max

d
θd
)
− θDt

]
as a function of T , using a large number of replications R (such as R = 10.000).
Repeat this for several different choices of (θ1, . . . , θk).

How does the result relate to the theoretical regret rate bound discussed in class,
and to Agrawal and Goyal (2012)?
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(d) Now let k = 2, fix θ1 = .5 and T = 200. Plot cumulative average regret for T as a
function of θ2, for θ2 ∈ [0, 1]. Do the same for the share of observations assigned
to the optimal treatment.

How does the result relate to the local-to-zero asymptotics discussed in class, and
to Figure 3 in Wager and Xu (2021)?

2. In this problem, we will again consider the Bernoulli bandit, and compare Thompson
sampling to exploration sampling, as discussed in Kasy and Sautmann (2021).

(a) Create a modified version of the first function from problem 1, where instead of
Thompson sampling treatment is assigned using exploration sampling.

Let this function additionally return the treatment d∗T with the highest posterior
mean.

(b) Create a modified version of the second function from problem 1, again replac-
ing Thompson sampling by exploration sampling. Exploration sampling assigns
treatment d with probability

qdt =
pdt (1− pdt )∑
d′ p

d′
t (1− pd

′
t )

,

where pdt is the posterior probability that treatment d is optimal.s

Let this function additionally return the average across replications of policy regret(
max

d
θd
)
− θd

∗
T ,

and the probability of choosing the best arm, P (d∗T = argmax d θ
d). Edit the

second function from problem 1 to do the same for Thompson sampling.

(c) Pick a fixed vector of parameters (θ1, . . . , θk) and a time horizon T and calculate
cumulative average regret as well as average policy regret, for both Thompson
sampling and exploration sampling. Do so using a large number of replications R
(such as R = 10.000).

How does the result line up with the discussion and simulations of Kasy and Saut-
mann (2021)?

(d) Repeat this exercise for several different parameter vectors (θ1, . . . , θk) and sample
sizes T . Discuss any patterns you might find.

References

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, pages 39–1.

Kasy, M. and Sautmann, A. (2021). Adaptive treatment assignment in experiments for policy
choice. Econometrica, 89(1):113–132.

Wager, S. and Xu, K. (2021). Diffusion asymptotics for sequential experiments. arXiv preprint
arXiv:2101.09855.

2


