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Takeaways

® Thompson sampling choses actions based on the posterior probability that they
are optimal. This principle is successful in a wide variety of settings.

® Worst case sequences delay learning as long as possible.
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Bit prediction

® The simplest special case of online learning.

e Binary outcomes and predictions, ¥;,¥, € {0,1}.

Mis-classification error loss: L(Y;,Y;) = 1(¥, #Y,).

® No predictors.

[=] Cumulative regret at time :

yE{O.,l}

R, = max <Z (1%, #Y,) — l(y;zéYs)]> .

s=1

Denote lt - Zi:] Yt, O[ =1 — 1[. Then

min (i 1(y # YS)) =min(0y, 1,).

ye{0,1}

o—1
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A Bayesian model

e Consider the following model, which we will use for the construction of an
algorithm
but not for the evaluation of this algorithm!

i.i.d. draws: N
Yt iid. Ber(@)

Uniform prior:
0 ~UJ[0,1].

Then the time 741 posterior for 8 is given by
0|Y17,YZ‘NB€[C1(1+1[,1+0[)

® Posterior mean: 141
t

E[6|Y1,....Y, 1] = it
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Thompson sampling

e A very simple, general and successful approach
for solving online learning and active learning problems.

® Denote by 8,_; the history (information) observed by the beginning of period z.

Let p,(y) be the posterior probability that y is the optimal action:

Stl) .

® Thompson sampling chooses ¥, =y with probability p;(y).
The sampling probability is set equal to
the posterior probability that an action is optimal.

p(y)=P (y = argmin E [L(7,Y:)|6]

® Thompson sampling can be implemented by
1. Sampling one draw 6, from the posterior for 6.

oy . s . el /o wv Nl A
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Expected regret for a given sequence

® For binary bit prediction:

argmin E[L(5,Y;)|0] = 1(6 > 1)
y

and thus

p(0) =P(6 < 318i-1) = Frera(1+1, 1140, 1) (3)-
Pt(l) =1 —FBeza(1+1,,171+0,,1)<%)-

® Fix the sequence Yi,...,Yr and assume wlog that 17 > T7/2 > Or.

e Consider two sequences (¥;) and (Y/), which are the same,
except the order of ¥; and Y, is swapped in sequence (Y/).
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Swapping

* Suppose wlog (¥, ¥+1) = (0,1).
Let 1, =k, O, =s—k.

® Then the difference in expected regret between the two sequences equals
R~ R = [P(f] = 0)+ P(¥,. = 1)
— [P = 1)+ P = 0)]
= [Fpera(i-rk1+5-#)(3) + (1 = Fpera2-, 1451 (3)))]
- [(1 - FBetu(lJrk,lJrka)(%)) +FBela(l+k,2+sfk)(%))]
= 2FBeta(1-4+k2+5—k) (%))

- [FBela(2+k,l+s7k) (%)) + FBem(l+k,2+s7k) (%))] .

® By the properties of the Beta distribution (Fact 2), we can rewrite this as

1 1 1
R —R, = . _
LT 25 B(1 k1 s —k) {lJrk 1+sk]
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Swapping continued

e |t follows that the difference R; — R, is negative iff k > s/2.
(cf. Lemma 4 in the paper).

® |n words: If there were more 1s than Os thus far,
it is worse if the “unexpected” observation Y; =0
comes before the “expected” Y, =1.

® We can use this observation to figure out the worst case sequence (Yi,...,Yr),
among all sequences with 17 =k > T /2.

® Theorem 5 in the paper does exactly that:
The worst-case sequences are exactly the sequences such that

1. The sequence ends with 2k — T 1s.

2. Before that, all pairs (¥;,Ys41) (for s odd) are equal to either (0,1) or (1,0).
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Practice problem

e Consider any sequence with 17 = k that is not of this form.

® Show that for such a sequence there exists a swap which increases regret.
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Intuition and implications

® The algorithm tries to learn whether 17 > Or, or the other way around.

® The worst case sequence delays learning as much as possible,
by alternating Os and 1s.

® One can calculate / bound regret for such a worst-case sequence.
By Theorem 6 in the paper:

Ry =0 (\/min(17,07)) = O(VT).
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