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Outline

Natural language model as a prediction problem.

Self-supervised learning.

Self-attention.

Transformer models.

Generative Al and beam search.
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Takeaways for this part of class

® Natural language models are joint probability distributions for sequences of tokens
(X1,X2,...).

® Tasks such as translation or question answering are based on conditional
probability distributions of sequences (Y1,Y2,...) given (X1,Xz,...).

e Self-supervised learning predicts tokens X; given their context ..., X; 1, X11,- ...

e A successful class of models uses self-attention, stacked into multiple layers. Such
models are called Transformers.

® Generative Al is based on sequential prediction of X; given (Xi,...,X;—1).
Finding high-probability predicted sequences often uses beam-search.
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Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence X to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.
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Prediction tasks in language processing



Prediction tasks in language processing

® Suppose the data consist of pairs of sequences of “tokens:”
x=(x1,...,%,) and y= (¥1,---,Vm)-

® Various tasks in language processing require to estimate models P for
P(Y|X)

® Typical loss function for an observation (x,y): Negative log likelihood,

—logP(Y =y|X =x).

Examples:

1. Machine translation:
X is a sentence in the source language.
y is a sentence in the target language.

2. Question answering: 4/19



Self-supervised learning
® These prediction problems require specific data — pairs of x and y.

® There is much greater availability of data of “unlabeled” sequences x.
E.g., all the text on the internet (Wikipedia, Arxiv, Github, ...).

® Self-supervised learning fits models for the distribution of such sequences.

Leading cases:

1. Autoregressive models:

Model P(xi]xl,...,xi_l), for all i.
2. Masking:
Model P(x;|x1,. .. Xi—1,Xit1,---,X,), for all i.
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Masking
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Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model
to these three items are used as the training loss. (In this and subsequent figures we display the input as words
rather than subword tokens; the reader should keep in mind that BERT and similar models actually use subword

tokens instead.)
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Embeddings and pre-training

® Many language models are trained in two steps:

1. Self-supervised learning on a large corpus of sequences x, using masking.
This yields an embedding (representation) of the source data x.

2. Fine-tuning on a task-specific corpus:
Using the embeddings from 1. as predictors for y.

® This is also known as transfer learning.

It yields much better results than simply training on the task-specific corpus.
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Prediction tasks in language processing

The transformer architecture

Generative Al
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The transformer architecture

How do we get an embedding for a sequence of tokens?

What functional form should we choose?

Leading answer: Transformers.

Transformers consist of multiple transformer blocks.

Each of which includes self-attention layers.
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Self-attention layers

® Take as given a sequence of input vectors xi,...,x,,

We want to transform it,
to produce a sequence of output vectors yi,...,y,
of the same dimension.

® y; is supposed to encode the meaning of x; in the context of the other x;.

First step: Take a linear tranformation of the x;.

Vi = WV')C,'.

Second step: Take a weighted average of the v; to get the output y;.
yi = ZOCI']'VJ'.
J
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Self-attention layers continued

® The weights o;; capture the importance of x; as context for x;.

® But where do the weights come from? Self-attention!
o — exp(score;;)
Y Y exp(score;y)’

Normalizing sum of weights to 1 (aka softmax / multinomial logit).

® score;j: Relevance of x; as context for x;.

score;j = (qi, kj) inner product
qi=W?-x; query
kj = Wk ’Xj key

e Contrast to time series models: Weights depend only on |i — j|.

= Would not recognize importance of far-away sentence parts for context.
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Backward looking and bi-directional self-attention
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13Ty PI®] Information flow in a bidirectional self-attention model. In processing each

element of the sequence, the model attends to all inputs, both before and after the current one.
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Transformer blocks

Self-attention layers are packaged with some additional transformations as follows:

z = LayerNorm(x+ Sel fAttention(x))
y = LayerNorm(z+ FFN(z))

LayerNorm(x) normalizes x = (x1,...,X,)
by subtracting the mean and dividing by the standard deviation.

The addition of x to Sel fAttention(x) is called “residual connection.”
This keeps raw information from previous input.

FFN(z) is a standard feed-forward neural network.
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Multi-head attention

® Tweak on the transformer block:
Replace the single self-attention layer
by several parallel versions, indexed by b.

® Thus:

b
exp(score;;)

! ; Y ! Ty Y exp(scorebj )’
scoreb <[Wq7 } , [W’“b ~xj] > .
® The rest of the transformer block stays the same.

® Motivation: Context matters in various ways.
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Generative Al

® Suppose you have fit an autoregressive model, which gives

POis1]x, 31,y ic1)-

Suppose you would like to generate a prediction of y, given an input x.

That is you would like to find

$ = argmax P(y|x) = argmax Hﬁ(y,-|x,y1 yeesYiel)-
y y i

Such forecasting of autoregressive models is at the heart of “generative Al."
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Greedy sampling

Naive idea: Sequentially find the highest probability prediction, one step at a time:

$i = argmax P(yit1|x,y1,- .., vic1)-

This is known as greedy search.

Problem:
This does not take into account the impact of the choice of ¥;
on the availability of high probability choices later.

® Dynamic programming problem!
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Beam search

® Exhaustive search of the tree of possible sequences is too costly.

® Compromise: Beam search.

1. Start with the k highest-probability choices for J;.

2. For each of these choices separately,
find the k highest probability choices for ;.

3. Keep the k sequences of §,7, with the highest probability,
discard the rest.

4. lterate.
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