
Foundations of machine learning

Large Language Models and Transformers

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026



Outline

• Natural language model as a prediction problem.

• Self-supervised learning.

• Self-attention.

• Transformer models.

• Generative AI and beam search.

1 / 19



Takeaways for this part of class

• Natural language models are joint probability distributions for sequences of tokens
(X1,X2, . . .).

• Tasks such as translation or question answering are based on conditional
probability distributions of sequences (Y1,Y2, . . .) given (X1,X2, . . .).

• Self-supervised learning predicts tokens Xt given their context . . . ,Xt−1,Xt+1, . . ..

• A successful class of models uses self-attention, stacked into multiple layers. Such
models are called Transformers.

• Generative AI is based on sequential prediction of Xt given (X1, . . . ,Xt−1).
Finding high-probability predicted sequences often uses beam-search.

2 / 19



3 / 19



Prediction tasks in language processing

The transformer architecture

Generative AI

References



Prediction tasks in language processing

• Suppose the data consist of pairs of sequences of “tokens:”
x = (x1, . . . ,xn) and y = (y1, . . . ,ym).

• Various tasks in language processing require to estimate models P̂ for

P(Y |X)

• Typical loss function for an observation (x,y): Negative log likelihood,

− log P̂(Y = y|X = x).

Examples:

1. Machine translation:
x is a sentence in the source language.
y is a sentence in the target language.

2. Question answering:
x is a question. y is an answer.

4 / 19



Self-supervised learning

• These prediction problems require specific data – pairs of x and y.

• There is much greater availability of data of “unlabeled” sequences x.
E.g., all the text on the internet (Wikipedia, Arxiv, Github, ...).

• Self-supervised learning fits models for the distribution of such sequences.

Leading cases:

1. Autoregressive models:
Model P(xi|x1, . . . ,xi−1), for all i.

2. Masking:
Model P(xi|x1, . . . ,xi−1,xi+1, . . . ,xn), for all i.

5 / 19



Masking

6 / 19



Embeddings and pre-training

• Many language models are trained in two steps:

1. Self-supervised learning on a large corpus of sequences x, using masking.
This yields an embedding (representation) of the source data x.

2. Fine-tuning on a task-specific corpus:
Using the embeddings from 1. as predictors for y.

• This is also known as transfer learning.
It yields much better results than simply training on the task-specific corpus.

7 / 19



Prediction tasks in language processing

The transformer architecture

Generative AI

References



The transformer architecture

• How do we get an embedding for a sequence of tokens?

• What functional form should we choose?

• Leading answer: Transformers.

• Transformers consist of multiple transformer blocks.

• Each of which includes self-attention layers.

8 / 19



Self-attention layers

• Take as given a sequence of input vectors x1, . . . ,xn,

• We want to transform it,
to produce a sequence of output vectors y1, . . . ,yn

of the same dimension.

• y j is supposed to encode the meaning of xi in the context of the other x j.

• First step: Take a linear tranformation of the xi.

vi =W v · xi.

• Second step: Take a weighted average of the vi to get the output yi.

yi = ∑
j

αi jv j.

9 / 19



Self-attention layers continued

• The weights αi j capture the importance of x j as context for xi.

• But where do the weights come from? Self-attention!

αi j =
exp(scorei j)

∑ j′ exp(scorei j′)
.

Normalizing sum of weights to 1 (aka softmax / multinomial logit).

• scorei j: Relevance of x j as context for xi.

scorei j = ⟨qi,k j⟩ inner product

qi =W q · xi query

k j =W k · x j key

• Contrast to time series models: Weights depend only on |i− j|.
⇒ Would not recognize importance of far-away sentence parts for context.

10 / 19



Backward looking and bi-directional self-attention

11 / 19



Transformer blocks

• Self-attention layers are packaged with some additional transformations as follows:

z = LayerNorm(x+Sel f Attention(x))

y = LayerNorm(z+FFN(z))

• LayerNorm(x) normalizes x = (x1, . . . ,xn)
by subtracting the mean and dividing by the standard deviation.

• The addition of x to Sel f Attention(x) is called “residual connection.”
This keeps raw information from previous input.

• FFN(z) is a standard feed-forward neural network.

12 / 19



13 / 19



Multi-head attention

• Tweak on the transformer block:
Replace the single self-attention layer
by several parallel versions, indexed by b.

• Thus:

yb
i = ∑

j
αi j ·

[
W v,b · xi

]
, α

b
i j =

exp(scoreb
i j)

∑ j′ exp(scoreb
i j′)

,

scoreb
i j =

〈[
W q,b · xi

]
,
[
W k,b · x j

]〉
.

• The rest of the transformer block stays the same.

• Motivation: Context matters in various ways.

14 / 19



Prediction tasks in language processing

The transformer architecture

Generative AI

References



Generative AI

• Suppose you have fit an autoregressive model, which gives

P̂(yi+1|x,y1, . . . ,yi−1).

• Suppose you would like to generate a prediction of y, given an input x.

• That is you would like to find

ŷ = argmax
y

P̂(y|x) = argmax
y

∏
i

P̂(yi|x,y1, . . . ,yi−1).

• Such forecasting of autoregressive models is at the heart of “generative AI.”

15 / 19



Greedy sampling

• Naive idea: Sequentially find the highest probability prediction, one step at a time:

ŷi = argmax P̂(yi+1|x,y1, . . . ,yi−1).

• This is known as greedy search.

• Problem:
This does not take into account the impact of the choice of ŷi

on the availability of high probability choices later.

• Dynamic programming problem!

16 / 19



Beam search

• Exhaustive search of the tree of possible sequences is too costly.

• Compromise: Beam search.

1. Start with the k highest-probability choices for ŷ1.

2. For each of these choices separately,
find the k highest probability choices for ŷ2.

3. Keep the k sequences of ŷ1, ŷ2 with the highest probability,
discard the rest.

4. Iterate.

17 / 19



18 / 19



References

Speech and Language Processing,
Dan Jurafsky and James H. Martin, 2023,
chapters 10-11.

19 / 19


	Prediction tasks in language processing
	The transformer architecture
	Generative AI
	References

