Foundations of machine learning

Bonus Sides: Reproducing Kernel Hilbert Spaces and Splines

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026

Splines and Reproducing Kernel Hilbert Spaces

• Penalized least squares: For some (semi-)norm ||f||,

$$\widehat{f} = \underset{f}{\operatorname{argmin}} \sum_{i} (Y_i - f(X_i))^2 + \lambda \|f\|^2.$$

Leading case: Splines, e.g.,

$$\widehat{f} = \underset{f}{\operatorname{argmin}} \sum_{i} (Y_i - f(X_i))^2 + \lambda \int f''(x)^2 dx.$$

- Can we think of penalized regressions in terms of a prior?
- If so, what is the prior distribution?

The finite dimensional case

• Consider the finite dimensional analog to penalized regression:

$$\widehat{\theta} = \underset{t}{\operatorname{argmin}} \sum_{i=1}^{n} (X_i - t_i)^2 + ||t||_C^2,$$

where

$$||t||_C^2 = t'C^{-1}t.$$

- We saw before that this is the posterior mean when
 - $X|\theta \sim N(\theta, I_k)$,
 - $\theta \sim N(0,C)$.

The reproducing property

• The norm $||t||_C$ corresponds to the inner product

$$\langle t, s \rangle_C = t'C^{-1}s.$$

- Let $C_i = (C_{i1}, \ldots, C_{ik})'$.
- Then, for any vector y,

$$\langle C_i, y \rangle_C = y_i.$$

Practice problem

Verify this.

Reproducing kernel Hilbert spaces

- Now consider a general Hilbert space of functions equipped with an inner product $\langle \cdot, \cdot \rangle$ and corresponding norm $\| \cdot \|$,
- such that for all x there exists an M_x such that for all f

$$f(x) \leq M_x \cdot ||f||.$$

- Read: "Function evaluation is continuous with respect to the norm $\|\cdot\|$."
- Hilbert spaces with this property are called reproducing kernel Hilbert spaces (RKHS).
- Note that L^2 spaces are not RKHS in general!

The reproducing kernel

• Riesz representation theorem: For every continuous linear functional L on a Hilbert space \mathscr{H} , there exists a $g_L \in \mathscr{H}$ such that for all $f \in \mathscr{H}$

$$L(f) = \langle g_L, f \rangle.$$

Applied to function evaluation on RKHS:

$$f(x) = \langle C_x, f \rangle$$

• Define the reproducing kernel:

$$C(x_1,x_2)=\langle C_{x_1},C_{x_2}\rangle.$$

• By construction:

$$C(x_1,x_2) = C_{x_1}(x_2) = C_{x_2}(x_1)$$

Practice problem

• Show that $C(\cdot,\cdot)$ is positive semi-definite, i.e., for any (x_1,\ldots,x_k) and (a_1,\ldots,a_k)

$$\sum_{i,j} a_i a_j C(x_i, x_j) \ge 0.$$

• Given a positive definite kernel $C(\cdot, \cdot)$, construct a corresponding Hilbert space.

Solution

Positive definiteness:

$$\sum_{i,j} a_i a_j C(x_i, x_j) = \sum_{i,j} a_i a_j \langle C_{x_i}, C_{x_j} \rangle$$

$$= \left\langle \sum_i a_i C_{x_i}, \sum_j a_j C_{x_j} \right\rangle = \left\| \sum_i a_i C_{x_i} \right\|^2 \ge 0.$$

• Construction of Hilbert space: Take linear combinations of the functions $C(x,\cdot)$ (and their limits) with inner product

$$\left\langle \sum_{i} a_{i}C(x_{i},\cdot), \sum_{j} b_{j}C(y_{j},\cdot) \right\rangle_{C} = \sum_{i,j} a_{i}a_{j}C(x_{i},y_{j}).$$

• Kolmogorov consistency theorem: For a positive definite kernel $C(\cdot,\cdot)$ we can always define a corresponding prior

$$f \sim GP(0,C)$$
.

- Recap:
 - For each regression penalty,
 - when function evaluation is continuous w.r.t. the penalty norm
 - there exists a corresponding prior.
- Next:
 - The solution to the penalized regression problem
 - is the posterior mean for this prior.

Solution to penalized regression

• Let f be the solution to the penalized regression

$$\widehat{f} = \underset{f}{\operatorname{argmin}} \sum_{i} (Y_i - f(X_i))^2 + \lambda \|f\|_C^2.$$

Practice problem

• Show that the solution to the penalized regression has the form

$$\widehat{f}(x) = c(x) \cdot (C + n\lambda I)^{-1} \cdot Y,$$

where
$$C_{ij} = C(X_i, X_j)$$
 and $c(x) = (C(X_1, x), ..., C(X_n, x))$.

- Hints
 - Write $\widehat{f}(\cdot) = \sum a_i \cdot C(X_i, \cdot) + \rho(\cdot)$,
 - where ρ is orthogonal to $C(X_i, \cdot)$ for all i.

Solution

• Using the reproducing property, the objective can be written as

$$\sum_{i} (Y_{i} - f(X_{i}))^{2} + \lambda \|f\|_{C}^{2}$$

$$= \sum_{i} (Y_{i} - \langle C(X_{i}, \cdot), f \rangle)^{2} + \lambda \|f\|_{C}^{2}$$

$$= \sum_{i} \left(Y_{i} - \left\langle C(X_{i}, \cdot), \sum_{j} a_{j} \cdot C(X_{j}, \cdot) + \rho \right\rangle \right)^{2} + \lambda \left\| \sum_{i} a_{i} \cdot C(X_{i}, \cdot) + \rho \right\|_{C}^{2}$$

$$= \sum_{i} \left(Y_{i} - \sum_{j} a_{j} \cdot C(X_{i}, X_{j}) \right)^{2} + \lambda \left(\sum_{i,j} a_{i} a_{j} C(x_{i}, x_{j}) + \|\rho\|_{C}^{2} \right)$$

$$= \|Y - C \cdot a\|^{2} + \lambda \left(a' C a + \|\rho\|_{C}^{2} \right)$$

- Given a, this is minimized by setting $\rho = 0$.
 - Now solve the quadratic program using first order conditions.

Splines

Now what about the spline penalty

$$\int f''(x)^2 dx?$$

- Is function evaluation continuous for this norm?
- Yes, if we restrict to functions such that f(0) = f'(0) = 0.
- The penalty is a semi-norm that equals 0 for all linear functions.
- It corresponds to the GP prior with

$$C(x_1, x_2) = \frac{x_1 x_2^2}{2} - \frac{x_2^3}{6}$$

for $x_2 \leq x_1$.

• This is in fact the covariance of integrated Brownian motion!

Practice problem

Verify that C is indeed the reproducing kernel for the inner product

$$\langle f, g \rangle = \int_0^1 f''(x)g''(x)dx.$$

 Takeaway: Spline regression is equivalent to the limit of a posterior mean where the prior is such that

$$f(x) = A_0 + A_1 \cdot x + g$$

where

$$g \sim GP(0,C)$$

and

$$A \sim N(0, v \cdot I)$$

as $v \to \infty$.

Solution

- Have to show: $\langle C_x, g \rangle = g(x)$
- Plug in definition of C_x
- Last 2 steps: use integration by parts, use g(0) = g'(0) = 0
- This yields:

$$\langle C_x, g \rangle = \int C_x''(y)g''(y)dy$$

$$= \int_0^x \left(\frac{xy^2}{2} - \frac{y^3}{6}\right)'' g''(y)dy + \int_x^1 \left(\frac{yx^2}{2} - \frac{x^3}{6}\right)'' g''(y)dy$$

$$= \int_0^x (x - y)g''(y)dy$$

$$= x \cdot (g'(x) - g'(0)) + \int_0^x g'(y)dy - (yg'(y))\big|_{y=0}^x$$

References

Gaussian process priors:

Williams, C. and Rasmussen, C. (2006). Gaussian processes for machine learning. MIT Press, chapter 2.

Splines and Reproducing Kernel Hilbert Spaces

Wahba, G. (1990). Spline models for observational data, volume 59. Society for Industrial Mathematics, chapter 1.