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Splines and Reproducing Kernel Hilbert Spaces

® Penalized least squares: For some (semi-)norm || f||,

f= argmin § (¥ — F(X)?+ A 1P
® | eading case: Splines, e.g.,

f = argmin Y (v — f(X)*+ A /f”(x)zdx.
f i

® Can we think of penalized regressions in terms of a prior?

® |f so, what is the prior distribution?
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The finite dimensional case

e Consider the finite dimensional analog to penalized regression:

~

0 = argmin Y (X; — 1)+ [|£2.
t

1

n
1=

where
2 =rc'r.

® We saw before that this is the posterior mean when

* X|6 ~N(6,I),

* 9~ N(0,C).
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The reproducing property

® The norm ||t||c corresponds to the inner product

{t,s)c =1'CLs.
® |letCi= (Cih- .. ,Cl'k)/.

® Then, for any vector y,
(Ci,y)c = yi-

Practice problem

Verify this.
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Reproducing kernel Hilbert spaces

Now consider a general Hilbert space of functions equipped with an inner product
(-,-) and corresponding norm || - ||,

such that for all x there exists an M, such that for all f

) < M-I £]-

Read: “Function evaluation is continuous with respect to the norm || - ||

Hilbert spaces with this property are called reproducing kernel Hilbert spaces
(RKHS).

Note that L? spaces are not RKHS in general!
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The reproducing kernel

® Riesz representation theorem:
For every continuous linear functional L on a Hilbert space 7,
there exists a g; € 7 such that for all f € 7

L(f) = (8. f)-
® Applied to function evaluation on RKHS:

f(x) = (Cy. f)
® Define the reproducing kernel:

C(x1,x2) = (Cy,,Cx,).

® By construction:
C(xl 7x2) = Cxl (x2) = sz (X])
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Practice problem

® Show that C(-,) is positive semi-definite, i.e.,
for any (xi,...,x;) and (ay,...,ax)

ZaiajC(x,-,xj) Z 0.
ij

® Given a positive definite kernel C(,-),
construct a corresponding Hilbert space.
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Solution

® Positive definiteness:

ZaiajC(xi,xj) = Zaiaj<CXi7CXj>

i,j iJ

2
>0.

= <ZaiCxi,Zaijj> =
i J

'Zaicxi

e Construction of Hilbert space: Take linear combinations of the functions C(x;,-)
(and their limits) with inner product

<ZaiC(xzs -),ijC(yj, ')>

= ZaiajC(x,-,yj).
c b
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® Kolmogorov consistency theorem:
For a positive definite kernel C(-,-)
we can always define a corresponding prior

f~GP(0,C).

® Recap:

® For each regression penalty,
® when function evaluation is continuous w.r.t. the penalty norm
® there exists a corresponding prior.

® Next:

® The solution to the penalized regression problem

® is the posterior mean for this prior.
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Solution to penalized regression

® |et f be the solution to the penalized regression

f= argmin ) (¥, — /(X)) + Al fll.

Practice problem

® Show that the solution to the penalized regression has the form

o~

fx)=c(x)-(C+nAD) 'y,

where Cl'j = C(Xi,Xj) and c(x) = (C(Xl,x),. oo ,C(Xn,x)).

® Hints

~

® Write f(-) =Y a;-C(Xi,) +p(-),

® where p is orthogonal to C(X;,) for all i.
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Solution

® Using the reproducing property, the objective can be written as

Z(Y-—f( D))+ AL
—Z VAN

=;<E—< X;, - Za, +p>>2+k

2
Z( Zaj (Xi,X;) ) +A<Zaiajc(xiaxj)+\l)|%>

=Y —C'GHZHL (a'Ca+lpl¢)

2

Zai-CX
i

C

® Given q, this is minimized by setting p = 0.

® Now solve the quadratic program using first order conditions. 1016



Splines
® Now what about the spline penalty

/ £ (x)?dx?

® |s function evaluation continuous for this norm?
® Yes, if we restrict to functions such that f(0) = f/(0) = 0.
® The penalty is a semi-norm that equals O for all linear functions.

® |t corresponds to the GP prior with

\S1 S

X1X

C(XI ,xz) = T

o St

for Xy < Xxi.

This is in fact the covariance of integrated Brownian motion! 114



Practice problem
Verify that C is indeed the reproducing kernel for the inner product

(f.8) = /Olf”(x)g”(x)dx.

® Takeaway: Spline regression is equivalent to the limit of a posterior mean where
the prior is such that
fx)=Ao+A;-x+g

where
g~ GP(0,C)

and
A~N(0,v-1)

as v — oo,
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Solution

® Have to show: (Cy,g) = g(x)
® Plug in definition of C;
® last 2 steps: use integration by parts, use g(0) =¢’(0) =0

® This yields:

(Cug) = [ L) )y
X 2 3 1 1 2 3 "
Xy y " yx X "
= _—— —_— — — d
/0<2 6> g(y)dy+x (2 6) g (y)dy
= /0 (x—y)g"(v)dy
= X" g/

(€)= O)+ [ ¢0)dy— g 0],

:Q(X'\ 13/14
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