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Splines and Reproducing Kernel Hilbert Spaces

• Penalized least squares: For some (semi-)norm ∥ f∥,

f̂ = argmin
f

∑
i
(Yi − f (Xi))

2 +λ∥ f∥2.

• Leading case: Splines, e.g.,

f̂ = argmin
f

∑
i
(Yi − f (Xi))

2 +λ

∫
f ′′(x)2dx.

• Can we think of penalized regressions in terms of a prior?

• If so, what is the prior distribution?
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The finite dimensional case

• Consider the finite dimensional analog to penalized regression:

θ̂ = argmin
t

n

∑
i=1

(Xi − ti)2 +∥t∥2
C,

where
∥t∥2

C = t ′C−1t.

• We saw before that this is the posterior mean when

• X |θ ∼ N(θ , Ik),

• θ ∼ N(0,C).
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The reproducing property

• The norm ∥t∥C corresponds to the inner product

⟨t,s⟩C = t ′C−1s.

• Let Ci = (Ci1, . . . ,Cik)
′.

• Then, for any vector y,
⟨Ci,y⟩C = yi.

Practice problem

Verify this.

3 / 14



Reproducing kernel Hilbert spaces

• Now consider a general Hilbert space of functions equipped with an inner product
⟨·, ·⟩ and corresponding norm ∥ · ∥,

• such that for all x there exists an Mx such that for all f

f (x)≤ Mx · ∥ f∥.

• Read: “Function evaluation is continuous with respect to the norm ∥ · ∥.”

• Hilbert spaces with this property are called reproducing kernel Hilbert spaces
(RKHS).

• Note that L2 spaces are not RKHS in general!
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The reproducing kernel

• Riesz representation theorem:
For every continuous linear functional L on a Hilbert space H ,
there exists a gL ∈ H such that for all f ∈ H

L( f ) = ⟨gL, f ⟩.

• Applied to function evaluation on RKHS:

f (x) = ⟨Cx, f ⟩

• Define the reproducing kernel:

C(x1,x2) = ⟨Cx1 ,Cx2⟩.

• By construction:
C(x1,x2) =Cx1(x2) =Cx2(x1)
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Practice problem

• Show that C(·, ·) is positive semi-definite, i.e.,
for any (x1, . . . ,xk) and (a1, . . . ,ak)

∑
i, j

aia jC(xi,x j)≥ 0.

• Given a positive definite kernel C(·, ·),
construct a corresponding Hilbert space.
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Solution

• Positive definiteness:

∑
i, j

aia jC(xi,x j) = ∑
i, j

aia j⟨Cxi ,Cx j⟩

=

〈
∑

i
aiCxi ,∑

j
a jCx j

〉
=

∥∥∥∥∥∑i
aiCxi

∥∥∥∥∥
2

≥ 0.

• Construction of Hilbert space: Take linear combinations of the functions C(x, ·)
(and their limits) with inner product〈

∑
i

aiC(xi, ·),∑
j

b jC(y j, ·)

〉
C

= ∑
i, j

aia jC(xi,y j).
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• Kolmogorov consistency theorem:
For a positive definite kernel C(·, ·)
we can always define a corresponding prior

f ∼ GP(0,C).

• Recap:

• For each regression penalty,

• when function evaluation is continuous w.r.t. the penalty norm

• there exists a corresponding prior.

• Next:

• The solution to the penalized regression problem

• is the posterior mean for this prior.
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Solution to penalized regression

• Let f be the solution to the penalized regression

f̂ = argmin
f

∑
i
(Yi − f (Xi))

2 +λ∥ f∥2
C.

Practice problem

• Show that the solution to the penalized regression has the form

f̂ (x) = c(x) · (C+nλ I)−1 ·Y ,

where Ci j =C(Xi,X j) and c(x) = (C(X1,x), . . . ,C(Xn,x)).

• Hints

• Write f̂ (·) = ∑ai ·C(Xi, ·)+ρ(·),

• where ρ is orthogonal to C(Xi, ·) for all i.

• Show that ρ = 0.

• Solve the resulting least squares problem in a1, . . . ,an.
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Solution

• Using the reproducing property, the objective can be written as

∑
i
(Yi − f (Xi))

2 +λ∥ f∥2
C

=∑
i
(Yi −⟨C(Xi, ·), f ⟩)2 +λ∥ f∥2

C

=∑
i

(
Yi −

〈
C(Xi, ·),∑

j
a j ·C(X j, ·)+ρ

〉)2

+λ

∥∥∥∥∥∑i
ai ·C(Xi, ·)+ρ

∥∥∥∥∥
2

C

=∑
i

(
Yi −∑

j
a j ·C(Xi,X j)

)2

+λ

(
∑
i, j

aia jC(xi,x j)+∥ρ∥2
C

)
=∥Y −C ·a∥2 +λ

(
a′Ca+∥ρ∥2

C
)

• Given a, this is minimized by setting ρ = 0.

• Now solve the quadratic program using first order conditions.
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Splines

• Now what about the spline penalty∫
f ′′(x)2dx?

• Is function evaluation continuous for this norm?

• Yes, if we restrict to functions such that f (0) = f ′(0) = 0.

• The penalty is a semi-norm that equals 0 for all linear functions.

• It corresponds to the GP prior with

C(x1,x2) =
x1x2

2
2

−
x3

2
6

for x2 ≤ x1.

• This is in fact the covariance of integrated Brownian motion! 11 / 14



Practice problem

Verify that C is indeed the reproducing kernel for the inner product

⟨ f ,g⟩=
∫ 1

0
f ′′(x)g′′(x)dx.

• Takeaway: Spline regression is equivalent to the limit of a posterior mean where
the prior is such that

f (x) = A0 +A1 · x+g

where
g ∼ GP(0,C)

and
A ∼ N(0,v · I)

as v → ∞.
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Solution

• Have to show: ⟨Cx,g⟩= g(x)

• Plug in definition of Cx

• Last 2 steps: use integration by parts, use g(0) = g′(0) = 0

• This yields:

⟨Cx,g⟩=
∫

C′′
x (y)g

′′(y)dy

=
∫ x

0

(
xy2

2
− y3

6

)′′
g′′(y)dy+

∫ 1

x

(
yx2

2
− x3

6

)′′
g′′(y)dy

=
∫ x

0
(x− y)g′′(y)dy

= x · (g′(x)−g′(0))+
∫ x

0
g′(y)dy− (yg′(y))

∣∣x
y=0

= g(x). 13 / 14
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