
Foundations of machine learning

Reinforcement learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026

Outline

• Markov decision problems: Goal oriented interactions with an environment.

• Expected updates – dynamic programming.
Familiar from economics. Requires complete knowledge of transition probabilities.

• Sample updates: Transition probabilities are unknown.

• On policy: Sarsa.

• Off policy: Q-learning.

• Approximation: When state and action spaces are complex.

• On policy: Semi-gradient Sarsa.

• Off policy: Semi-gradient Q-learning.

• Deep reinforcement learning.

• Eligibility traces and T D(λ).

1 / 20

Takeaways for this part of class

• Markov decision problems provide a general model of goal-oriented interaction
with an environment.

• Reinforcement learning considers Markov decision problems where transition
probabilities are unknown.

• A leading approach is based on estimating action-value functions.

• If state and action spaces are small, this can be done in tabular form, otherwise
approximation (e.g., using neural nets) is required.

• We will distinguish between on-policy and off-policy learning.

2 / 20

Introduction

• Many interesting problems can be modeled as Markov decision problems.

• Biggest successes in game play (Backgammon, Chess, Go, Atari games,...), where
lots of data can be generated by self-play.

• Basic framework is familiar from macro / structural micro, where it is solved using
dynamic programming / value function iteration.

• Big difference in reinforcement learning:
Transition probabilities are not known, and need to be learned from data.

• This makes the setting similar to bandit problems, with the addition of changing
states.

• We will discuss several approaches based on estimating action-value functions.
3 / 20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Markov decision problems

• Time periods t = 1,2, . . .

• States St ∈ S (This is the part that’s new relative to bandits!)

• Actions At ∈ A (St)

• Rewards Rt+1

• Dynamics (transition probabilities):

P(St+1 = s′,Rt+1 = r|St = s,At = a,St−1,At−1, . . .) = p(s′,r|s,a).

• The distribution depends only on the current state and action.

• It is constant over time.

• We will allow for continuous states and actions later.
4 / 20

Policy function, value function, action value function

• Objective: Discounted stream of rewards, ∑t≥0 γ tRt .

• Expected future discounted reward at time t, given the state St = s:
Value function,

Vt(s) = E

[
∑
t ′≥t

γ
t ′−tRt ′ |St = s

]
.

• Expected future discounted reward at time t, given the state St = s and action
At = a:
Action value function,

Qt(a,s) = E

[
∑
t ′≥t

γ
t ′−tRt ′ |St = s,At = a

]
.

5 / 20

Bellman equation

• Consider a policy π(a|s), giving the probability of choosing a in state s.
This gives us all transition probabilities, and we can write expected discounted
returns recursively

Qπ(a,s) = (BπQπ)(a,s) = ∑
s′,r

p(s′,r|s,a)

(
r+ γ ·∑

a′
π(a′|s′)Qπ(a′,s′)

)
.

• Suppose alternatively that future actions are chosen optimally.
We can again write expected discounted returns recursively

Q∗(a,s) = (B∗Q∗)(a,s) = ∑
s′,r

p(s′,r|s,a)
(

r+ γ ·max
a′

Q∗(a′,s′)
)
.

6 / 20

Existence and uniequeness of solutions

• The operators Bπ and B∗ define contraction mappings on the space of action
value functions. (As long as γ < 1.)

• By Banach’s fixed point theorem, unique solutions exist.

• The difference between assuming a given policy π, or considering optimal actions
argmax a Q(a,s), is the dividing line between on policy and off policy methods in
reinforcement learning.

7 / 20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Expected updates - dynamic programming

• Suppose we know the transition probabilities p(s′,r|s,a).

• Then we can in principle just solve for the action value functions and optimal
policies.

• This is typically assumed in macro, IO models.

• Solutions: Dynamic programming.
Iteratively replace

• Qπ(a,s) by (Bπ Qπ)(a,s), or

• Q∗(a,s) by (B∗Q∗)(a,s).

• Decision problems with terminal states: Can solve in one sweep of backward
induction.

• Otherwise: Value function iteration until convergence – replace repeatedly.
8 / 20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Sample updates

• In practically interesting settings, agents (human or AI) typically don’t know the
transition probabilities p(s′,r|s,a).

• This is where reinforcement learning comes in.
Learning from observation while acting in an environment.

• Observations come in the form of tuples

⟨s,a,r,s′⟩.

• Based on a sequence of such tuples, we want to learn Qπ or Q∗.

9 / 20

Classification of one-step reinforcement
learning methods

1. Known vs. unknown transition probabilities.

2. Value function vs. action value function.

3. On policy vs. off policy.

• We will discuss Sarsa and Q-learning.

• Both: unknown transition probabilities and
action value functions.

• First: “tabular” methods, where we keep track
off all possible values (a,s).

• Then: “approximate” methods for richer
spaces of (a,s), e.g., deep neural nets.

10 / 20

Sarsa

• On policy learning of action value functions.

• Recall Bellman equation

Qπ(a,s) = ∑
s′,r

p(s′,r|s,a)

(
r+ γ ·∑

a′
π(a′|s′)Qπ(a′,s′)

)
.

• Sarsa estimates expectations by sample averages.

• After each observation ⟨s,a,r,s′,a′⟩, replace the estimated Qπ(a,s) by

Qπ(a,s)+α ·
(
r+ γ ·Qπ(a′,s′)−Qπ(a,s)

)
.

• α is the step size / speed of learning / rate of forgetting.

11 / 20

Sarsa as stochastic (semi-)gradient descent

• Think of Qπ(a,s) as prediction for Y = r+ γ ·Qπ(a′,s′).

• Quadratic prediction error:
(Y −Qπ(a,s))

2 .

• Gradient for minimization of prediction error for current observation w.r.t.
Qπ(a,s):

−(Y −Qπ(a,s)) .

• Sarsa is thus a variant of stochastic gradient descent.

• Variant: Data are generated by actions where π is chosen as the optimal policy
for the current estimate of Qπ .

• Reasonable method, but convergence guarantees are tricky.
12 / 20

Q-learning

• Similar to Sarsa, but off policy.

• Like Sarsa, estimate expectation over p(s′,r|s,a) by sample averages.

• Rather than the observed next action a′ consider the optimal action
argmax a′ Q∗(a′,s′).

• After each observation ⟨s,a,r,s′⟩, replace the estimated Q∗(a,s) by

Q∗(a,s)+α ·
(

r+ γ ·max
a′

Q∗(a′,s′)−Q∗(a,s)
)
.

13 / 20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Approximation

• So far, we have implicitly assumed that there is a small, finite number of states s
and actions a, so that we can store Q(a,s) in tabular form.

• In practically interesting cases, this is not feasible.

• Instead assume parametric functional form for Q(a,s;θ).

• In particular: Deep neural nets!

• Assume differentiability with gradient ∇θ Q(a,s;θ).

14 / 20

Stochastic gradient descent

• Denote our prediction target for an observation ⟨s,a,r,s′,a′⟩ by

Y = r+ γ ·Qπ(a′,s′;θ).

• As before, for the on-policy case, we have the quadratic prediction error

(Y −Qπ(a,s;θ))2 .

• Semi-gradient: Only take derivative for the Qπ(a,s;θ) part, but not for the
prediction target Y :

−(Y −Qπ(a,s;θ)) ·∇θ Q(a,s;θ).

• Stochastic gradient descent updating step: Replace θ by

θ +α · (Y −Qπ(a,s;θ)) ·∇θ Q(a,s;θ).

15 / 20

Off policy variant

• As before, can replace a′ by the estimated optimal action.

• Change the prediction target to

Y = r+ γ ·max
a′

Q∗(a′,s′;θ).

• Updating step as before, replacing θ by

θ +α · (Y −Q∗(a,s;θ)) ·∇θ Q∗(a,s;θ).

16 / 20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Multi-step updates

• All methods discussed thus far are one-step methods.

• After observing ⟨s,a,r,s′,a′⟩, only Q(a,s) is targeted for an update.

• But we could pass that new information further back in time, since

Q(a,s) = E

[
t+k

∑
t ′=t

γ
t ′−tRt + γ

k+1Q(At+k+1,St+k+1)|At = a,St = s

]
.

• One possibility: at time t + k+1, update θ using the prediction target

Y k
t =

t+k−1

∑
t ′=t

γ
t ′−tRt + γ

kQπ(At+k,St+k).

• k-step Sarsa: At time t + k, replace θ by

θ +α ·
(

Y k
t −Qπ(At ,St ;θ)

)
·∇θ Qπ(At ,St ;θ).

17 / 20

T D(λ) algorithm

• Multi-step updates can result in faster learning.

• We can also weight the prediction targets for different numbers of steps, e.g.
using weights λ k:

Y k
t =

t+k

∑
t ′=t

γ
t ′−tRt + γ

k+1Qπ(At+k+1,St+k+1),

Y λ
t = (1−λ)

∞

∑
k=1

λ
k ·Y k

t .

• But don’t we have to wait forever before we can make an update based on Y λ
t ?

• Note quite, since we can do the updating piece-wise!

• This idea leads to the so-called T D(λ) algorithm.
18 / 20

Eligibility traces

• For T D(λ), we proceed as for one-step Sarsa, using the prediction target

Yt = Rt + γ ·Qπ(At+1,St+1;θ).

• But we replace the gradient ∇θ Qπ(At ,St ;θ) by a weighted average of past
gradients, the so-called eligibility trace: Let Z0 = 0 and

Zt = γλ ·Zt−1 +∇θ Qπ(At ,St ;θ).

• Updating step: At time t replace θ by

θ +α · (Yt −Qπ(At ,St ;θ)) ·Zt .

• This exactly implements the updating by Y λ
t in the long run.

• This is one of the most popular and practically successful reinforcement learning
algorithms.

19 / 20

References

• Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

• François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J.
(2018). An introduction to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219–354.

20 / 20

	Markov decision problems
	Expected updates - dynamic programming
	Sample updates
	Approximation
	Eligibility traces
	References

