Foundations of machine learning

Reinforcement learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026

Outline

® Markov decision problems: Goal oriented interactions with an environment.

® Expected updates — dynamic programming.
Familiar from economics. Requires complete knowledge of transition probabilities.

® Sample updates: Transition probabilities are unknown.

® On policy: Sarsa.
® Off policy: Q-learning.

® Approximation: When state and action spaces are complex.

® On policy: Semi-gradient Sarsa.
® Off policy: Semi-gradient Q-learning.

® Deep reinforcement learning. 1/20

Takeaways for this part of class

® Markov decision problems provide a general model of goal-oriented interaction
with an environment.

® Reinforcement learning considers Markov decision problems where transition
probabilities are unknown.

® A leading approach is based on estimating action-value functions.

® |f state and action spaces are small, this can be done in tabular form, otherwise
approximation (e.g., using neural nets) is required.

® We will distinguish between on-policy and off-policy learning.

2/20

Introduction

® Many interesting problems can be modeled as Markov decision problems.

® Biggest successes in game play (Backgammon, Chess, Go, Atari games,...), where
lots of data can be generated by self-play.

® Basic framework is familiar from macro / structural micro, where it is solved using
dynamic programming / value function iteration.

® Big difference in reinforcement learning:
Transition probabilities are not known, and need to be learned from data.

® This makes the setting similar to bandit problems, with the addition of changing
states.

® We will discuss several approaches based on estimating action-value functions.
3/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Markov decision problems

® Time periodst=1,2,...

States S; € .7 (This is the part that's new relative to bandits!)

Actions A, € <7 (S;)

Rewards R,

Dynamics (transition probabilities):
P(S;1 =5 Ry =r|S=s,A=a,8_1,A_1,...) = p(s,rs,a).
® The distribution depends only on the current state and action.

® [t is constant over time.

4/20

Policy function, value function, action value function

® Objective: Discounted stream of rewards, ¥~V R;.

® Expected future discounted reward at time ¢, given the state S; = s:
Value function,

Vi(s) =E

Z ’)/Lth/‘S, = S] .

t'>t

® Expected future discounted reward at time ¢, given the state S; = s and action
A =a:
Action value function,

O:(a,s)=E [Z)/'*tR,/]S, =s5A=a

t'>t

5/20

Bellman equation

e Consider a policy m(als), giving the probability of choosing a in state s.
This gives us all transition probabilities, and we can write expected discounted
returns recursively

Or(a,s) = (%$0xr)(a,s) Zp s, r|s,a <r+}/'27r(a’|s’)Qn(a’,s’)>.

® Suppose alternatively that future actions are chosen optimally.
We can again write expected discounted returns recursively

0.fa9) = (#.0.)(05) = Kot sl (r+7-mix ()).

6/20

Existence and uniequeness of solutions

® The operators %, and %, define contraction mappings on the space of action
value functions. (As long as y < 1.)

® By Banach's fixed point theorem, unique solutions exist.

® The difference between assuming a given policy 7, or considering optimal actions
argmax ,Q(a,s), is the dividing line between on policy and off policy methods in
reinforcement learning.

7/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Expected updates - dynamic programming

Suppose we know the transition probabilities p(s’,r|s,a).

Then we can in principle just solve for the action value functions and optimal
policies.

This is typically assumed in macro, IO models.

Solutions: Dynamic programming.
Iteratively replace

® Or(a,s) by (%z0z)(a,s), or
® 0O.(a,s) by (A.0:)(a,s).

Decision problems with terminal states: Can solve in one sweep of backward
induction.

8/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Sample updates

In practically interesting settings, agents (human or Al) typically don't know the
transition probabilities p(s',r|s,a).

This is where reinforcement learning comes in.
Learning from observation while acting in an environment.

Observations come in the form of tuples

(s,a,r,s').

Based on a sequence of such tuples, we want to learn QO or Q..

9/20

Classification of one-step reinforcement
learning methods

1. Known vs. unknown transition probabilities.
2. Value function vs. action value function.

3. On policy vs. off policy.

e We will discuss Sarsa and Q-learning.

® Both: unknown transition probabilities and
action value functions.

® First: “tabular” methods, where we keep track
off all possible values (a,s).

® Then: “approximate” methods for richer

Value
estimated

vz (8)

~

V(s

qx(s,a)

q+(s,a)

Expected updates
(bP)

OO0 OO0 OO0

policy evaluation
5

a

Chk

OO0 00 OO0

value iteration
ENG
NG
s
/oA A
/

e o o o

g-policy evaluation

A A,

e o o e

qg-value iteration

Sample updates
(one-step TD)

"
o/

Sarsa

S’
max,

’

¢ o o

Q-learning

10/20

Sarsa

® On policy learning of action value functions.

Recall Bellman equation
Or(a,s) = Zp(s’,r\s,a) <r+ }/-Zﬂ(a’|s’)Qn(a',s’)>)

® Sarsa estimates expectations by sample averages.

After each observation (s,a,r,s’,d’), replace the estimated Qz(a,s) by

Or(a,s)+a- (r+ Y- Qn(d,s") — Q,r(a,s)) .

® (is the step size / speed of learning / rate of forgetting.

11/20

Sarsa as stochastic (semi-)gradient descent

® Think of Qz(a,s) as prediction for Y =r+7y-Qx(d,s').

Quaderatic prediction error:

(Y — Qx(a,s))*.

Gradient for minimization of prediction error for current observation w.r.t.
Oxrl(a,s):
— (Y = 0Qxla,s)).

Sarsa is thus a variant of stochastic gradient descent.

Variant: Data are generated by actions where 7 is chosen as the optimal policy
for the current estimate of Q.

® Reasonable method, but convergence guarantees are tricky.
12/20

Q-learning

Similar to Sarsa, but off policy.

Like Sarsa, estimate expectation over p(s’,r|s,a) by sample averages.

Rather than the observed next action a’ consider the optimal action
argmax , Q. (d',s").

After each observation (s,a,r,s'), replace the estimated Q.(a,s) by

Q*(a7s)+a' <F+ Ym‘}x Q*(alasl) _Q*(aas)> :

13/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Approximation

So far, we have implicitly assumed that there is a small, finite number of states s
and actions a, so that we can store Q(a,s) in tabular form.

In practically interesting cases, this is not feasible.

Instead assume parametric functional form for Q(a,s;0).

In particular: Deep neural nets!

Assume differentiability with gradient VoQ(a,s;0).

14 /20

Stochastic gradient descent
® Denote our prediction target for an observation (s,a,r,s’,a’) by

Y =r+7 Q0z(d,s;0).

® As before, for the on-policy case, we have the quadratic prediction error
(Y — Qx(a,s;6))>.

® Semi-gradient: Only take derivative for the Qz(a,s;0) part, but not for the
prediction target Y:

— (Y —Qx(a,s;0))-VeO(a,s; 0).

® Stochastic gradient descent updating step: Replace 6 by

0+ (Y—0x(a,s;0)) VeO(a,s;0).

15/20

Off policy variant

e As before, can replace d’ by the estimated optimal action.

® Change the prediction target to

Y =r+vy-max Q.(d,s';0).
a/

® Updating step as before, replacing 6 by

0+a-(Y—0.i(a,5:0)) VgQi(a,s;0).

16 /20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Multi-step updates

® All methods discussed thus far are one-step methods.

After observing (s,a,r,s’,d’), only Q(a,s) is targeted for an update.

® But we could pass that new information further back in time, since

Qla,s) = E

t+k
Z }/ _th + }/(+1Q(At+k+l aSt-l-k—I—l)‘At =a,5 =s|.
t'=t

One possibility: at time t+k+ 1, update 6 using the prediction target
t+k—1

vf = Z Y 'R A Y Qr(Arik, Sisi).

t'=t

k-step Sarsa: At time t +k, replace 6 by
0+ 0 (Yf —0x(A1,550)) - VoQr(Ar,5::6).

17/20

TD(A) algorithm

® Multi-step updates can result in faster learning.

® We can also weight the prediction targets for different numbers of steps, e.g.
using weights AX:

t+k
Ytk = Z Y 'R+ 7k+lQ7r(Al+k+1’Sf+k+l)’

t'=t
vP=(-1)Y kvt
k=1
* But don’t we have to wait forever before we can make an update based on Y*?
® Note quite, since we can do the updating piece-wise!

® This idea leads to the so-called TD(A) algorithm.

18/20

Eligibility traces
® For TD(A), we proceed as for one-step Sarsa, using the prediction target

Y, =R +7 OQn(Ai+1,5+1:0).

But we replace the gradient VoQr(A;,S;;0) by a weighted average of past
gradients, the so-called eligibility trace: Let Zg =0 and

Z = YA /| +V6Qﬂ(AtaSt;9)-

Updating step: At time ¢ replace 6 by
0+o- (Y, —0x(A,5:0)) - Z.

This exactly implements the updating by Y/L in the long run.

® This is one of the most popular and practically successful reinforcement learning

algorithms.
19/20

References

° Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

° Francois-Lavet, V., Henderson, P, Islam, R., Bellemare, M. G., and Pineau, J.
(2018). An introduction to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219-354.

20/20

	Markov decision problems
	Expected updates - dynamic programming
	Sample updates
	Approximation
	Eligibility traces
	References

