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Outline

® Regression trees: Splitting the covariate space.

® Random forests: Many trees.
Using bootstrap aggregation to improve predictions.

e Causal trees: Predicting heterogeneous causal effects.

Ground truth not directly observable, for cross-validation.
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Takeaways for this part of class

® Trees partition the covariate space and form predictions as local averages.

® |terative splitting of partitions allows us to be more flexible in regions of the
covariate space with more variation of outcomes.

® Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads
to random forests when applied to trees.

® Things get more complicated when we want to predict heterogeneous causal
effects, rather than observable outcomes.

® This is because we do not directly observe a ground truth that can be used for
tuning.
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Regression trees

® Suppose we have i.i.d. observations (X;,Y;) and want to estimate
g(x) =E[Y|X =],

Suppose we furthermore have a partition of the regressor space into subsets
(R1,...,Rm).

Then we can estimate g(-) by averages in each element of the partition:
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This is a regression analog of a histogram.
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Recursive binary partitions
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Constructing the partition

® How to choose the partition?
e Start with the trivial partition with one element.

e Greedy algorithm (CART): lteratively split an element of the partition,
such that the in-sample prediction improves as much as possible.

® That is: Given (Ry,...,Ruy),
® For each R,, m=1,...,M, and
® foreach X;, j=1,...,k,

® find the x;,, that minimizes the mean squared error,
if we split R, along variable X; at x; .

® Then pick the (m, j) that minimizes the mean squared error,
and construct a new partition with M + 1 elements.

® |terate.
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Tuning and pruning

® Key tuning parameter: Total number of splits M.

® \We can optimize this via cross-validation.

® CART can furthermore be improved using “pruning.”
® |dea:
® Fit a flexible tree (with large M) using CART.
® Then iteratively remove (collapse) nodes.
® To minimize the sum of squared errors,
plus a penalty for the number of elements in the partition.
® This improves upon greedy search.

It yields smaller trees for the same mean squared error.
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From trees to forests

® Trees are intuitive and do OK, but they are not amazing for prediction.

® We can improve performance a lot using either bootstrap aggregation (bagging)
or boosting.
* Bagging:
® Repeatedly draw bootstrap samples (Xl-”,Yl»b);‘=1 from the observed sample.

® For each bootstrap sample, fit a regression tree g°(-).

® Average across bootstrap samples to get the predictor
N 1 &,
g(x) = B Z g (x).
b=1
® This is a technique for smoothing predictions.

The resulting predictor is called a “random forest.”

® Possible modification:
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An empirical example (courtesy of Jann Spiess)
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Regression tree
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Random forest
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Causal trees

® Suppose we observe i.i.d. draws of (¥;,D;,X;), and wish to estimate
T(x)=E[Y|D=1,X =x]—E[Y|D =0,X =x].
® Motivation: This is the conditional average treatment effect

under an unconfoundedness assumption on potential outcomes,

(r° v L D|x.

® This is relevant, in particular, for targeted treatment assignment.
® We might, for a given partition Z = (Ry,...,Ruy), use the estimator
T(x) = Z (c,ln —c?n) “1(x € Rp)

o Y. Y- 1(X; € Ry,Di =d)
m Z,-l(X,' €R,,,D, :d)
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Targets for splitting and cross-validation

® Recall that CART uses greedy splitting.
It aims to minimize in-sample mean squared error.

® For tuning, we proposed to use the out-of-sample mean squared error
in order to choose the tree depth.

® Analog for estimation of 7(-): Sum of squared errors (minus normalizing constant),

SSE(S) = ¥ ((t—#(X;))* —77),
ics

where . is either the estimation sample, or a hold-out sample for cross-validation.
(The term 7?2 is added as a convenient normalization.)

® Problem: 7; is not observed.
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Targets continued

¢ Solution: We can rewrite SSE(.¥),

SSE(.7) =Y (3(X:,2#)- (1(X;, #) —21;)).
i€’

® Suppose we split our sample into (.7!,.72), use .#! for estimation, and . for
tuning. Let £;(X,Z) be the estimator based on sample .%/.

® An estimator of SSE(.#?) (for tuning) is then given by
SSE(?) = Y (#1(Xi, ) - (41(Xi, Z) — 2%2(X;, R))).
i€
® An analog to the in-sample sum of squared errors (for CART splitting) is given by

SSE(#Y) =Y (—t1(X:,%)?).
i€
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