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Outline

• Regression trees: Splitting the covariate space.

• Random forests: Many trees.
Using bootstrap aggregation to improve predictions.

• Causal trees: Predicting heterogeneous causal effects.
Ground truth not directly observable, for cross-validation.
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Takeaways for this part of class

• Trees partition the covariate space and form predictions as local averages.

• Iterative splitting of partitions allows us to be more flexible in regions of the
covariate space with more variation of outcomes.

• Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads
to random forests when applied to trees.

• Things get more complicated when we want to predict heterogeneous causal
effects, rather than observable outcomes.

• This is because we do not directly observe a ground truth that can be used for
tuning.
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Regression trees

• Suppose we have i.i.d. observations (Xi,Yi) and want to estimate
g(x) = E[Y |X = x].

• Suppose we furthermore have a partition of the regressor space into subsets
(R1, . . . ,RM).

• Then we can estimate g(·) by averages in each element of the partition:

ĝ(x) = ∑
m

cm ·1(x ∈ Rm)

cm =
∑iYi ·1(Xi ∈ Rm)

∑i 1(Xi ∈ Rm)
.

• This is a regression analog of a histogram.

3 / 15



Recursive binary partitions
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Constructing the partition

• How to choose the partition?

• Start with the trivial partition with one element.

• Greedy algorithm (CART): Iteratively split an element of the partition,
such that the in-sample prediction improves as much as possible.

• That is: Given (R1, . . . ,RM),

• For each Rm, m = 1, . . . ,M, and

• for each X j, j = 1, . . . ,k,

• find the x j,m that minimizes the mean squared error,
if we split Rm along variable X j at x j,m.

• Then pick the (m, j) that minimizes the mean squared error,
and construct a new partition with M+1 elements.

• Iterate.
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Tuning and pruning

• Key tuning parameter: Total number of splits M.

• We can optimize this via cross-validation.

• CART can furthermore be improved using “pruning.”

• Idea:

• Fit a flexible tree (with large M) using CART.

• Then iteratively remove (collapse) nodes.

• To minimize the sum of squared errors,
plus a penalty for the number of elements in the partition.

• This improves upon greedy search.
It yields smaller trees for the same mean squared error.
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From trees to forests

• Trees are intuitive and do OK, but they are not amazing for prediction.

• We can improve performance a lot using either bootstrap aggregation (bagging)
or boosting.

• Bagging:

• Repeatedly draw bootstrap samples (Xb
i ,Y

b
i )

n
i=1 from the observed sample.

• For each bootstrap sample, fit a regression tree ĝb(·).

• Average across bootstrap samples to get the predictor

ĝ(x) =
1
B

B

∑
b=1

ĝb(x).

• This is a technique for smoothing predictions.
The resulting predictor is called a “random forest.”

• Possible modification:
Restrict candidate splits to a random subset of predictors in each tree-fitting step.
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An empirical example (courtesy of Jann Spiess)
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OLS
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Regression tree
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Random forest
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Causal trees

• Suppose we observe i.i.d. draws of (Yi,Di,Xi), and wish to estimate

τ(x) = E[Y |D = 1,X = x]−E[Y |D = 0,X = x].

• Motivation: This is the conditional average treatment effect
under an unconfoundedness assumption on potential outcomes,

(Y 0,Y 1)⊥ D|X .

• This is relevant, in particular, for targeted treatment assignment.

• We might, for a given partition R = (R1, . . . ,RM), use the estimator

τ̂(x) = ∑
m

(
c1

m − c0
m
)
·1(x ∈ Rm)

cd
m =

∑iYi ·1(Xi ∈ Rm,Di = d)
∑i 1(Xi ∈ Rm,Di = d)

.
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Targets for splitting and cross-validation

• Recall that CART uses greedy splitting.
It aims to minimize in-sample mean squared error.

• For tuning, we proposed to use the out-of-sample mean squared error
in order to choose the tree depth.

• Analog for estimation of τ(·): Sum of squared errors (minus normalizing constant),

SSE(S ) = ∑
i∈S

(
(τi − τ̂(Xi))

2 − τ
2
i
)
,

where S is either the estimation sample, or a hold-out sample for cross-validation.
(The term τ2

i is added as a convenient normalization.)

• Problem: τi is not observed.
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Targets continued

• Solution: We can rewrite SSE(S ),

SSE(S ) = ∑
i∈S

(τ̂(Xi,R) · (τ̂(Xi,R)−2τi)) .

• Suppose we split our sample into (S 1,S 2), use S 1 for estimation, and S 2 for
tuning. Let τ̂ j(X ,R) be the estimator based on sample S j.

• An estimator of SSE(S 2) (for tuning) is then given by

ŜSE(S 2) = ∑
i∈S

(τ̂1(Xi,R) · (τ̂1(Xi,R)−2τ̂2(Xi,R))) .

• An analog to the in-sample sum of squared errors (for CART splitting) is given by

ŜSE(S 1) = ∑
i∈S

(
−τ̂1(Xi,R)2) .
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