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Outline
® Definitions:

® (lassification and prediction problems.
® Empirical risk minimization.
® PAC learnability.

® Proving the “Fundamental Theorem of statistical learning:”

® ¢c-representative samples.
® Uniform convergence.
® No free lunch.

® Shatterings.
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Takeaways for this part of class

o (lassification and prediction is about out-of-sample prediction errors.

® These can be decomposed into an approximation error (“bias”)
and an estimation error (“variance").

® There is a trade-off between the two.
Larger classes of predictors imply less approximation error (no “underfitting”),
but more estimation error (“overfitting”).

® The worst-case estimation error depends on the VC-dimension of the class of
predictors considered.
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Our goal: Understanding this figure
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Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning
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Setup and notation

Features (predictive covariates): X

Labels (outcomes): Y € {0,1}
® Training data (sample): 8 = {(X;,Y))}",

® Data generating process: (X;,Y;) are i.i.d. draws from a distribution D

Prediction rules (hypotheses): h: X — {0,1}
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Learning algorithms

® Risk (generalization error): Probability of misclassification

L(h,D) = Ex y)~o [1(h(X) #Y)].
® Empirical risk: Sample analog of risk,

L(h8) = L Y 1(h(X) £ 7).

ne

® | earning algorithms
map samples 8 = {(X;,Y;)}1,
into predictors hg.

® Notation:
h corresponds to a in the decision theory slides,
D corresponds to 6.
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Chihuahua or muffin?

RGBT
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Empirical risk minimization

® Optimal predictor:

hy, = argmin L(h,D) = 1(E(x y)~p[Y[X] > 1/2).
h

® Hypothesis class for h: H.

® Empirical risk minimization:

hERM — argmin L(h,8).
heH

® Special cases (for more general loss functions):
Ordinary least squares, maximum likelihood,
minimizing empirical risk over model parameters.
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Practice problem

How does empirical risk minimization relate

1. to ordinary least squares, and

2. to maximum likelihood estimation?
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(Agnostic) PAC learnability
Definition 3.3
A hypothesis class H is agnostic probably approximately correct (PAC) learnable if

® there exists a learning algorithm hg

such that for all €,6 € (0,1) there exists an n < oo

such that for all distributions D
L(hg,D) < inf L(h,D)+¢
heH

with probability of at least 1 — &

over the draws of training samples
8 = {(X;,Yi)}j-, ~™ D.
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Discussion

e Definition is not specific to 0/1 prediction error loss.
® Worst case over all possible distributions D.

® Requires small regret:
The oracle-best predictor in H doesn't do much better.

® Comparison to the best predictor in the hypothesis class H
rather than to the unconditional best predictor AZ,.

® = The smaller the hypothesis class H
the easier it is to fulfill this definition.

¢ Definition requires small (relative) loss with high probability,

not just in expectation.
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Practice problem

How does PAC learnability relate to the performance criteria we discussed in the
decision theory slides?
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e-representative samples

e Definition 4.1
A training set S is called e-representative if

sup |L(h,8) —L(h,D)| < e.
hed

® [emma 4.2
Suppose that 8 is €/2-representative.
Then the empirical risk minimization predictor thM satisfies

L(hE™M D) < higgf{L(h, D) +e.

® Proof: if 8 is €/2-representative,
then for all h € 3

L(hs™, D) < L(hs™™,8) +€/2 < L(h,8) +&/2 < L(h,D) +e&.
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Uniform convergence

® Definition 4.3
J has the uniform convergence property if

e for all €,0 € (0,1) there exists an n < oo
® such that for all distributions D

® with probability of at least 1 — 0 over draws of training samples
8 ={(X,Yi)}, ~“D

® it holds that S is e-representative.

e Corollary 4.4
If H has the uniform convergence property, then

1. the class is agnostically PAC learnable, and

2. thM is a successful agnostic PAC learner for J.
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Probability theory intermission

Large deviations

® Suppose that
Elexp(A - (Y —E[Y]))] < exp(w(4)).

® |et Yn = %Z]SignYi for i.i.d. Yl
Then, by Markov's inequality and independence across t,

> Elexp(A - (¥, — E[Y]))]
P(Y,—E[Y] > ¢€) < 5oL 0
_ i<i<nElexp((A/n) - (Yi — E[Y]))]
exp(A-€)
< exp(ny(A/n) — A -€).
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Large deviations continued
® Define the Legendre-transformation of y as

v (e) = sup[A-e — w(d)].
A>0

e Taking the inf over A in the previous slide implies

P(Y,—E[Y] > ¢) <exp(—n-y*(g)).

e For distributions bounded by [0, 1]:
w(A) =A2%/8 and y*(g) = 2¢%.

® This implies Hoeffding's inequality:

P(Y,— E[Y] > €) < exp(—2ne?).
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Finite hypothesis classes

® Corollary 4.6
Let 3 be a finite hypothesis class, and assume that loss is in [0,1].
Then H enjoys the uniform convergence property, where we set

1= [foe220/0)

2¢e?

The class H is therefore agnostically PAC learnable.

® Sketch of proof: Union bound over h € H,
plus Hoeffding's inequality,

P(|L(h,8) — L(h,D)| > €) < 2exp(—2ne?).
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No free lunch

Theorem 5.1

® Consider any learning algorithm hg for binary classification
with 0/1 loss on some domain X.

® Let n < |X|/2 be the training set size.

® Then there exists a D on X x {0,1},
such that Y = f(X) for some f with probability 1, and

® with probability of at least 1/7 over the distribution of §,

L(hg, D) > 1/8.
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® |ntuition of proof:

® Fix some set C C X with |C| = 2n,

® consider D uniform on C,
and corresponding to arbitrary mappings ¥ = f(X).

® Lower-bound worst case L(hg,D)
by the average of L(hg,D) over all possible choices of f.

e Corollary 5.2
Let X be an infinite domain set
and let 3 be the set of all functions from X to {0, 1}.
Then H is not PAC learnable.
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Error decomposition

L(h87 D) = Eapp t Eest
Eapp = il’éigI{lL(h,ﬂ)

es:Lh,D— Lh,@
€est = L{hs, D) —minL(h, D)

® Approximation error: &g).

Estimation error: &,.

® Bias-complexity tradeoff:
Increasing H increases &, but decreases g,,,.

Learning theory provides bounds on &,.
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Practice problem

Write out the approximation error and the (expected) estimation error
for the case where

1. loss is given by the squared prediction error, and

2. H is given by the set of linear predictors.
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VC dimension and the Fundamental Theorem of statistical learning



Shattering

From now on, restrict to Y € {0,1}.

Definition 6.3

® A hypothesis class H

® shatters a finite set C C X

if the restriction of H to C (denoted Hc)

is the set of all functions from C to {0, 1}.

In this case: |H¢| = 2/¢l.

21/29



VC dimension
Definition 6.5

® The VC-dimension of a hypothesis class H, VCdim(H),

® is the maximal size of a set C C X that can be shattered by K.

® |f H can shatter sets of arbitrarily large size

® we say that H has infinite VC-dimension.

Corollary of the no free lunch theorem:

® | et H be a class of infinite VC-dimension.

® Then H is not PAC learnable.
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Examples

® Threshold functions: A(X)=1(X <c¢).
VCdim =1

e Intervals: h(X) = 1(X € [a,b]).
VCdim =2

e Finite classes: h € H = {hy,...,h,}.
VCdim < log,(n)

® VCdim is not always # of parameters: hg(X) = [.5sin(6X)], 6 € R.
VCdim = oo.
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The Fundamental Theorem of Statistical learning
Theorem 6.7

® |Let H be a hypothesis class of functions
¢ from a domain X to {0,1},

® and let the loss function be the 0 —1 loss.

Then, the following are equivalent:

1. X has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC learner for K.
3. H is agnostic PAC learnable.

4. H has a finite VC-dimension.
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Proof

. — 2.: Shown above (Corollary 4.4).

. — 3.: Immediate.

— 4.: By the no free lunch theorem.

— 1.: That's the tricky part.

® Sauer-Shelah-Perles’'s Lemma.

® Uniform convergence for classes of small effective size.
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Growth function

® The growth function of H is defined as

Ty(n) = max |H¢|.
CCX:|C|=n

® Suppose that d = VCdim(H) < eo.
Then for n < d, t9¢(n) = 2" by definition.
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Sauer-Shelah-Perles’'s Lemma

Lemma 6.10
For d = VCdim(H) < oo,

75¢(b) < max |[{B CC: X shatters B}|
CCX:|C|=n

d d
<y <”> <(5)"
i=0 \! d
® First inequality is the interesting / difficult one.

® Proof by induction.
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Uniform convergence for classes of small effective size
Theorem 6.11

® For all distributions D and every 6 € (0,1)

e with probability of at least 1 — & over draws of training samples
8 ={(X,Yi)}i, ~ D,

® we have
4+ \/log(ts¢(2n))

sup |[L(h,8) —L(h,D)| <
o 8) L D) <

Remark

® We already saw that uniform convergence holds for finite classes.

® This shows that uniform convergence holds for classes
with polynomial growth of

Ty (m) = p,-gl.?}?\(,m |Hel. 28/29
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