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Outline

® Setup: the Normal means model
X ~N(6,I)

and the canonical estimation problem with loss ||6 — 6||%.

The James-Stein (JS) shrinkage estimator.

Three ways to arrive at the JS estimator (almost):

1. Reverse regression of 6; on X;.
2. Empirical Bayes: random effects model for 6;.

3. Shrinkage factor minimizing Stein's Unbiased Risk Estimate.

Proof that JS uniformly dominates X as estimator of 6.
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Takeaways for this part of class
® Shrinkage estimators trade off variance and bias.

® In multi-dimensional problems, we can estimate the optimal degree of shrinkage.

® Three intuitions that lead to the JS-estimator:

1. Predict 6; given X; = reverse regression.
2. Estimate distribution of the 6; = empirical Bayes.

3. Find shrinkage factor that minimizes estimated risk.

® Some calculus allows us to derive the risk of JS-shrinkage
= better than MLE, no matter what the true 0 is.
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The Normal means model
Setup

e 9 cRK

e~ N(0,I)

4 X=9+8NN(9,Ik)

Estimator: 6 = 6(X)

® | oss: squared error N -
L(6,6)=Y (6~ 6’

1

® Risk: mean squared error

R(6,8) = Eq [L(@, e)} =Y Eo [(é,- - eﬂ .
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Two estimators

® Canonical estimator: maximum likelihood,
~ML
6 =X

® Risk function

® (Celebrated result: uniform risk dominance; for all 6

R(6",6) <R®" 6) =k
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First motivation of JS: Regression perspective

® We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

® Consider estimators of the form

or

® How to choose ¢ or (a,b)?

® Two particular possibilities:

1. Maximum likelihood: ¢ =1

2. James-Stein: ¢ = (1—“‘;{#)
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Practice problem (Infeasible estimator)

® Suppose you knew Xi,...,X; as well as 6y,..., 6,

® but are constrained to use an estimator of the form 6, = c¢-X;.

1. Find the value of ¢ that minimizes loss.

2. For estimators of the form 5, =a+b-X; find the values of a and b that minimize
loss.
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Solution

First problem:
¢* = argmin Z(c X, — 6)?
¢ i

Least squares problem!

First order condition:

Solution
. 2Xi;

COLixE
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Solution continued

® Second problem:

(a*,b*) = argmin Z(a+b-X,- —6,)?
a,b i

® | east squares problem again!

® First order conditions:

O:Z(a +b*-X;— 6;)
0:Z(a +b"-X;—6,)-X
® Solution o _
X, —X)-(6,—0 Lo
P LX=X)-(020) _sxo o4 x_7g
Li(Xi—X)? Sx
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Regression and reverse regression

® Recall X;=6;+¢;, E[85|9,'] =0, Var(ei) =1.

® Regression of X on 6: Slope

Sxo Sed
N N
6 7]

For optimal shrinkage, we want to predict 6 given X, not the other way around!

® Reverse regression of 6 on X: Slope

2 2
SX@ o SQ +s89 ~ SG

sy S5+2seot+s2 sp+1

Interpretation: “signal to (signal plus noise) ratio” < 1.
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Expectations

Practice problem

1. Calculate the expectations of

and .
2
sy =1 L (X =X2-X
l

2. Calculate the expected numerator and denominator of ¢* and b*.
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Solution

* EX]=6

e ¢*=(X0)/(X?2), and E[X6] = 62. Thus

02
=
0% +1
® b* =sxg/s%, and E[sxg] = s3. Thus
b* ~ ;7%.
sgt1
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Feasible analog estimators

Practice problem

Propose feasible estimators of ¢* and b*.
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A solution

® Thus:
X2—0e—¢e2 X2—1 1
x2  x2 @ x?

cC =
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Solution continued

® Similarly:
— 5Xx6
o br=2p
°X

® 59~ 0, sgzl.

® Since X; = 0;+¢;,
2 2 2,02
Sxp = Sx — Sxe =Sy —Sge —Sg ~ Sy — 1

® Thus: ) 5 )
bt — X ~80e — S sx—l_1 i_g
B 5% 52 52
X X X
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James-Stein shrinkage

® We have almost derived the James-Stein shrinkage estimator.

Only difference: degree of freedom correction

Optimal corrections:
sy (k=2)/k
X2

)

and
(k—3)/k'

2
Sx

pS=1-

Note: if 6 =0, then ¥, X? ~ x2.

Then, by properties of inverse x2 distributions

1 1
E|l—s|= ,
|:ZiXi2:| k—2 16 /36



Positive part JS-shrinkage

® The estimated shrinkage factors can be negative.

o IS <0iff
Y x? <k-2.

® Better estimator: restrict to ¢ > 0.

® “Positive part James-Stein estimator:”

§]S+ = max (O, 1— (k—2)/k> -X
X2

® Dominates James-Stein.

® We will focus on the JS-estimator for analytical tractability.
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Second motivation of JS: Parametric empirical Bayes
Setup

e As before: 6 € RF
® X|60~N(6,L)
* Loss L(6,0) = ¥,(6;,— 6;)>

® Now add an additional conceptual layer:
Think of 6; as i.i.d. draws from some distribution.

® “Random effects vs. fixed effects”
® Let's consider 6; ~ N(0,12),

where 72 is unknown.
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Practice problem

® Derive the marginal distribution of X given 7°.
® Find the maximum likelihood estimator of 72.
* Find the conditional expectation of 6 given X and 7°.

® Plug in the maximum likelihod estimator of 72 to get the empirical Bayes
estimator of 6.
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Solution

® Marginal distribution:
X~N(0,(t°+1)- L)

e Maximum likelihood estimator of 72:

- 1 X?
72 —argmax —— log(72+ 1)+ !
5 22-< B +1) <fz+1))

1
=X2-1

e Conditional expectation of 6; given X;, 7°:

~ i, Xi §
5 CovOX)
Var(Xi)

~

® Plugging in 72
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General parametric empirical Bayes
Setup

® Data X,
parameters 0,
hyper-parameters 1

® | ikelihood
X’97n ~ fX\@

® Family of priors
9\77 ~ f6|n
® |imiting cases:

® 0 =1: Frequentist setup.

® 1 has only one possible value: Bayesian setup.
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Empirical Bayes estimation

® Marginal likelihood

Sxm (xIm) :/fx\e(x\e)fem(eln)de.

Has simple form when family of priors is conjugate.
® Estimator for hyper-parameter 11: marginal MLE
1 =argmax fx|, (x[n).
n
® Estimator for parameter 0: pseudo-posterior expectation
0=E[0|X =x,n=T1].
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Third motivation of JS: Stein's Unbiased Risk Estimate

¢ Stein’s lemma (simplified version):

Suppose X ~ N(6,1;.).

® Suppose g(-) : R — R is differentiable and E[|g(X)]|] < co.

Then
E[(X—0)-g(X)] =E[Vg(X)].

® Note:

® 0 shows up in the expression on the LHS, but not on the RHS

® Unbiased estimator of the RHS: Vg(X)
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Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ¢(-) satisfies
9'() = —x-0(x).

2. Consider each component i separately and use integration by parts.
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Solution

® Recall that ¢(x) = (27) %2 -exp(—x?/2).
Differentiation immediately yields the first claim.

® Consider the component i = 1; the others follow similarly. Then

E[dy8(X)] =

k

=/ / 8X1g(x],...,xk) -(p(x] 791)~ (p(x,'fe,')dx]
X2,... Xk JX] i=2
k

:/ /g(xl,...,xk) (= @(r1 — 61)) - [] 0(xi — 8i)elx, ...
X2,...Xk JX] =2
k

:/ / g(x17...7xk) ~()C1 — 91)(p(x1 —91)~ (P(X,'— 9,-)dx1
Jxp,.xp Jx) i—2

=E[(X; - 61) - g(X)].

® Collecting the components i = 1,...,k yields

E[(X —0)-g(X)] = E[Vg(X)].
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Stein’s representation of risk

e Consider a general estimator for 6 of the form 6 = 6(X) = X + g(X), for
differentiable g.

® Recall that the risk function is defined as

=YL El(6:-6)°]

® \We will show that this risk function can be rewritten as

k+Z )?]+2E[0y,8:(X)]) -

Practice problem

® |nterpret this expression.

® Propose an unbiased estimator of risk, based on this expression.
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Answer

® The expression of risk has 3 components:

1. k is the risk of the canonical estimator 8 = X, corresponding to g =0.
2. Y,E[gi(X)% = X, E[(6; — X;)?] is the sample sum of squared errors.

3. Y;E[0y,gi(X)] can be thought of as a penalty for overfitting.

® We thus can think of this expression as giving a “penalized least squares”
objective.

® The sample analog expression gives “Stein’s Unbiased Risk Estimate” (SURE)
~ —~ 2
R=k+ Y (0-X) +2- Y dui(X).
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® We will use Stein's representation of risk in 2 ways:

1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).

2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein's representation of risk.
Hints:

® Add and subtract X; in the expression defining R(@,B).

® Use Stein's lemma.
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Solution

=Y E[(Xi—6)° +O—X)? 26— X)) (Xi— 6)]
=y +E [:i(X)?] +2E[gi(X) - (X; — 6)]
-y +E[2:(X)?] +2E [0x,8i(X)],

where Stein's lemma was used in the last step.
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Using SURE to pick the tuning parameter

e First use of SURE: To pick tuning parameters, as an alternative to cross-validation
or marginal likelihood maximization.

® Simple example: Linear shrinkage estimation

~

0=c-X.

Practice problem

e Calculate Stein’s unbiased risk estimate for 8.

® Find the coefficient ¢ minimizing estimated risk.
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Solution

® When azczf
then g(X ):G—X:(c—l) X,
and 0,,8i(X) =c—

Estimated risk:
R=k+(1—c)* Y. X7 +2k-(c—1).
i

® First order condition for minimizing R:
k=(1-c")-Y X7
i
® Thus .
C* =1-—=.
X2

® Once again: Almost the JS estimator, up to degrees of freedom correction! 3136



Celebrated result: Dominance of the JS-estimator

® We next use the population version of SURE to prove uniform dominance of the
JS-estimator relative to maximum likelihood.

® Recall that the James-Stein estimator was defined as

8" = (1-“‘_)”‘) X.

)(2

~ML
® Claim: The JS-estimator has uniformly lower risk than 6 = X.

Practice problem

Prove this, using Stein’s representation of risk.
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Solution

® The risk of §ML is equal to k.

® For JS, we have

~JS k—2
g,(X):Ol Xl: _ZXZ 1y
J
-2
2ugi(X) = = (—1
L;X;

® Summing over components gives

Zgi(X)2: (k=27

XX

k—2
¥ o) = —(ZX)

and

and
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Solution continued

® Plugging into Stein's expression for risk then gives

~JS

k—2 2 _ )2

g |6=2P(-2)

X T Lx?

_9)\2
k- E (k—2)
X7

® The term (g;;z is always positive (for k > 3), and thus so is its expectation.

Uniform dominance immediately follows.

® Pretty cool, no?

34/36



References

® Textbook introduction:

Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Busi-
ness Media, chapter 7.

® Reverse regression perspective:

Stigler, S. M. (1990). The 1988 Neyman memorial lecture: a Galtonian perspec-
tive on shrinkage estimators. Statistical Science, pages 147-155.

35/36



® Parametric empirical Bayes:
Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and appli-
cations. Journal of the American Statistical Association, 78(381):pp. 47-55.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31.
Springer, section 4.6.

® Stein's Unbiased Risk Estimate:

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution.
The Annals of Statistics, 9(6):1135-1151.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31.

Springer, sections 5.2, 5.4, 5.5.

36/36



	The Normal means model
	Regression perspective
	Parametric empirical Bayes
	Stein's Unbiased Risk Estimate
	References

