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The Normal means model as asymptotic approximation
® The Normal means model might seem quite special.
e But asymptotically, any sufficiently smooth parametric model is equivalent.

® Formally: The likelihood ratio process of n i.i.d. draws Y; from the distribution

Py i)

converges to the likelihood ratio process of one draw X from
—1
N(n1g))

® Here h is a local parameter for the model around 6y, and Ig, is the Fisher
information matrix.
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® Suppose that Py has a density fy relative to some measure.

® Recall the following definitions:

® Log-likelihood: ¢¢(Y) =1log fo(Y)
® Score: {g(Y) = dglog fo(Y)
® Hessian Zy(Y) = d3log fo(Y)

® Information matrix: Ig = Varg(g(Y)) = —Eg[lg(Y)]

® |ikelihood ratio process:
H f90+h/f
foo (Vi
where Yy,....Y, are i.i.d. Py ) s distributed.
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Practice problem (Taylor expansion)

® Using this notation, provide a second order Taylor expansion for the log-likelihood
Loy+n(Y) with respect to h.

® Provide a corresponding Taylor expansion for the log-likelihood of n i.i.d. draws Y;
from the distribution Py /. /-

¢ Assuming that the remainder is negligible, describe the limiting behavior (as
n — oo) of the log-likelihood ratio process

1ogH feo”'/ ﬁ
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Solution
® Expansion for £g 44 (Y):

Coprn(Y) = Lo, (Y)+ 1 Lo, (Y)+ L -h-lo)(Y) - h+ remainder.

® Expansion for the log-likelihood ratio of n i.i.d. draws:

logH f90+h’/\f _ 1 h/ Zeeo )+ o L. deo ) - h+ remainder.

® Asymptotic behavior (by CLT, LLN):
ZEQO —4N(0,1q,),

E'ZE% ) =" =31,
1
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Suppose the remainder is negligible.
Then the previous slide suggests

logH f"“’l“ AR A= LT h,

where

N(0,1g,).

Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for
this to hold.

We show next that this is the same likelihood ratio process as for the model

N(h,lgol).
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Practice problem

® Suppose X NN(h,Igol)

® Write out the log likelihood ratio

qygl()(-—-h)

0

log—>——
(PIOTO‘ (X)
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Solution

® The Normal density is given by

1
(2m)|det(ly,)|

(Ple—ol (x) = -exp (—%x’ -Ig, ‘x)

® Taking ratios and logs yields

9019*01 (X - h)

=W Iy -x—1N Iy b
91,1 (X) T

log

® This is exactly the same process we obtained before, with /4, - X taking the role of
A.
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Why care

® Suppose that ¥; ~i Poipyymr and Ty(Y1,...,Y,) is an arbitrary statistic that
satisfies
T, —¢ Lo

for some limiting distribution Lg 4 and all A.
® Then Lg, is the distribution of some (possibly randomized) statistic 7'(X)!

¢ This is a (non-obvious) consequence of the convergence of the likelihood ratio
process.

e cf. Theorem 7.10 in van der Vaart (2000).
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Maximum likelihood and shrinkage

® This result applies in particular to T = estimators of 6.

e Suppose that ML is the maximum likelihood estimator.

® Then OML 4 X and any shrinkage estimator based on 8% converges in
distribution to a corresponding shrinkage estimator in the limit experiment.
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