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The Normal means model as asymptotic approximation

• The Normal means model might seem quite special.

• But asymptotically, any sufficiently smooth parametric model is equivalent.

• Formally: The likelihood ratio process of n i.i.d. draws Yi from the distribution

Pn
θ0+h/

√
n,

converges to the likelihood ratio process of one draw X from

N
(

h, I−1
θ0

)
• Here h is a local parameter for the model around θ0, and Iθ0 is the Fisher
information matrix.
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• Suppose that Pθ has a density fθ relative to some measure.

• Recall the following definitions:

• Log-likelihood: ℓθ (Y ) = log fθ (Y )

• Score: ℓ̇θ (Y ) = ∂θ log fθ (Y )

• Hessian ℓ̈θ (Y ) = ∂ 2
θ

log fθ (Y )

• Information matrix: Iθ = Varθ (ℓ̇θ (Y )) =−Eθ [ℓ̈θ (Y )]

• Likelihood ratio process:

∏
i

fθ0+h/
√

n(Yi)

fθ0 (Yi)
,

where Y1, . . . ,Yn are i.i.d. Pθ0+h/
√

n distributed.
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Practice problem (Taylor expansion)

• Using this notation, provide a second order Taylor expansion for the log-likelihood
ℓθ0+h(Y ) with respect to h.

• Provide a corresponding Taylor expansion for the log-likelihood of n i.i.d. draws Yi

from the distribution Pθ0+h/
√

n.

• Assuming that the remainder is negligible, describe the limiting behavior (as
n → ∞) of the log-likelihood ratio process

log∏
i

fθ0+h/
√

n(Yi)

fθ0 (Yi)
.
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Solution

• Expansion for ℓθ0+h(Y ):

ℓθ0+h(Y ) = ℓθ0(Y )+h′ · ℓ̇θ0(Y )+
1
2 ·h · ℓ̈θ0(Y ) ·h+ remainder.

• Expansion for the log-likelihood ratio of n i.i.d. draws:

log∏
i

f
θ0+h′/

√
n(Yi)

fθ0 (Yi)
= 1√

n h′ ·∑
i
ℓ̇θ0(Yi)+

1
2n h′ ·∑

i
ℓ̈θ0(Yi) ·h+ remainder.

• Asymptotic behavior (by CLT, LLN):

∆n := 1√
n ∑

i
ℓ̇θ0(Yi)→d N(0, Iθ0),

1
2n ·∑

i
ℓ̈θ0(Yi)→p −1

2 Iθ0 .
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• Suppose the remainder is negligible.

• Then the previous slide suggests

log∏
i

fθ0+h/
√

n(Yi)

fθ0 (Yi)
=A h′ ·∆− 1

2 h′Iθ0h,

where
∆ ∼ N (0, Iθ0) .

• Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for
this to hold.

• We show next that this is the same likelihood ratio process as for the model

N
(

h, I−1
θ0

)
.
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Practice problem

• Suppose X ∼ N
(

h, I−1
θ0

)
• Write out the log likelihood ratio

log
ϕI−1

θ0
(X −h)

ϕI−1
θ0
(X)

.
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Solution

• The Normal density is given by

ϕI−1
θ0
(x) =

1√
(2π)k|det(I−1

θ0
)|
· exp

(
−1

2 x′ · Iθ0 · x
)

• Taking ratios and logs yields

log
ϕI−1

θ0
(X −h)

ϕI−1
θ0
(X)

= h′ · Iθ0 · x− 1
2 h′ · Iθ0 ·h.

• This is exactly the same process we obtained before, with Iθ0 ·X taking the role of
∆.
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Why care

• Suppose that Yi ∼iid Pθ+h/
√

n, and Tn(Y1, . . . ,Yn) is an arbitrary statistic that
satisfies

Tn →d Lθ ,h

for some limiting distribution Lθ ,h and all h.

• Then Lθ ,h is the distribution of some (possibly randomized) statistic T (X)!

• This is a (non-obvious) consequence of the convergence of the likelihood ratio
process.

• cf. Theorem 7.10 in van der Vaart (2000).
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Maximum likelihood and shrinkage

• This result applies in particular to T = estimators of θ .

• Suppose that θ̂ ML is the maximum likelihood estimator.

• Then θ̂ ML →d X , and any shrinkage estimator based on θ̂ ML converges in
distribution to a corresponding shrinkage estimator in the limit experiment.
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