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Outline

® Variational auto-encoders.

® Self-prediction with a “bottleneck.”
® Encoder and decoder models.

® Diffusion models.

® Special case of hierarchical autoencoders.
® Fix the encoder model: Just add normal noise.
® Alternative ways of estimating the decoder model.

® Conditioning and guidance.

® Same as before, but conditioning on prompts.

® Can over-emphasize exambles which fit a prombpt. 1/14



Takeaways for this part of class

® What transformers have achieved for language generation,
diffusion models have achieved for image generation.

® The basic idea is simple:

1. Add normal noise to images in a data-base.
2. Predict the de-noised image from the noisy one.
3. Do so in multiple rounds.

4. Then generate images by starting with pure noise.

e Conditioning predictions on (encodings of) text labels
yields image generation based on text prompts.
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Setup

i.i.d. observables: x (e.g., images).

Latent variables: z.

Goal: Model the distribution p(x).

Decoder model: pg(x|z).

Encoder model: g4 (z|x).

e Marginal (prior) for z: p(z).
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The decoder as a generative model

¢ Given 0, it is easy to sample from p(x):

1. Obtain a draw of z ~ p(z).

2. Then obtain a draw from pg(x|z).

® Maximum likelihood estimation:
Given the sample of observed x;, find 6 to maximize

Zi:logpe (x;) = Xi:log </Zp9(xi\z)p(z)dz> )

® Problem: The integral is too hard to compute for interesting models
(e.g., neural networks).
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Decomposing the likelihood

e By definition of conditional probabilities, for arbitrary z:

B po(x|2)p(z) g (2)x)
log Py (x) = log < Po(z) <z|x>>

() o (25)

® Taking expectations of this over g4(z|x), for arbitrary ¢, gives:

logpe(x) = = Ecvgy(aly) [102 (Wﬂ t Ergy(ay [Iog <ZZZ|\3>}

L(¢,0;x) (Evidence lower bound) Dkr(g¢(z|x)||po(zlx)) (KL divergence)
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Estimating the model by maximizing the ELBO

® Rearranging the likelihood decomposition:
L(9,0;x) =log pg(x) — Dxr(qy(z[x)||pe(z|x)).

® Maximizing the ELBO L(¢,0;x) wrt 6 and ¢ is equivalent to simultaneously

1. Maximizing log pg(x).

2. Minimizing Dkr(q¢ (z|x)||pe(z|x)).
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How to maximize the ELBO

® We can decompose the ELBO further:

L9,052) = Eer gy o2 P00 )

q9(z]x)

= Ez~q¢(Z|X) [10gP6 (X’Z)] - EZN‘M(Z‘)‘) |:10g (q?)((ZZ’)X)>:|

Dk1(q4(2|x)||p(z))  (Prior matching term)

(Reconstruction term)
® The expectations can easily be approximated using simulation.

® Suppose gy (z[x) = N(Hg (x),Z¢(x)).

e A differentiable estimate of the expectations averages over draws of
2j = Ho(x) X5 ()2 &,
for fixed draws £; ~ N(0,7).
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Hierarchical autoencoders

e Straightforward generalization: Denote x¥ = x,

Hierarchy of multiple latent variables x', x2, ... xT.

® Encoder and decoder models for each layer:

g (¥'|¥ ) po (X *).

e ELBO for this hierarchical model:

N Do (xO:T)
L(¢,0;x) = Exl:Tqu)(xl:T‘xO) [log (M
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Diffusion models

¢ Simplification: g4 is a known distribution g.

® In particular:

AV~ NG - A 7 (1) 1).

® For ar =T, a; =0, we get

X0 ~NWar-x°,(1—ag)-1)- =~ N(0,I).

® Furthermore
O ~N@@ O+ A,

for constants a',b',c' that are easy to calculate.
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Estimating diffusion models

® | eading terms in ELBO for diffusion models are of the form

Ex’wq(x’\xo) [DKL (Q(xt71’xoﬁxj)"pe('xjilet))]

® Recall g(x'~'x%,x') is a normal distribution.

® For such normal distributions with known variance, minimizing Dg; is equivalent
to predicting the mean

EX U0 x] =d - X+ ¥,

based on x'.
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Three equivalent prediction targets
® Goal: predict E[x¥ '|x°,x] =a' -x° +b" - ¥, based on x'.

® Three equivalent approaches:

1. Predict x° based on x'
Plug into @' -x" +b' - X'

2. Predict & based on X,

where X' = /&, - +/1— & - &.

3. Predict Vlog p(x') based on x'.
Recall Tweedie's formula:

ER°¥] =« +(1—a)- Viegp(x').
® All three prediction targets can be predicted using neural networks.

® Approach 3 leads to an interpretation of denoising as gradient flow. i
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Conditioning

Typically, in generative Al, the goal is not to learn p(x), but instead p(x|y).

Leading example: y is a text prompt, or LLM encoding thereof.

Immediate extension of our previous approach:
Learn conditional predictions of x'~! given x' and y.

Works, but leads to generated x that might not be
“clear-cut” representations of y.
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Classifier guidance

® By Bayes' rule,

Vlogp(¥'|y) = Vlog (W) = Vlog p(x') + Vlog p(ylx').

® (Can learn the score of the conditional model
by learning the score of the unconditional model, and a classifier.

® To generate more clear-cut examples, overweight the classifier in gradient flow:
Vlogp(x') +7- Viog p(ylx')

for y> 1.
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