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Outline

® Supervised machine learning as a first stage estimator in econometrics.
® Two problems that arise using a plugin approach.

® Two solutions - orthogonalized scores and sample splitting.

[

How to derive orthogonalized scores.

® Examples.

Asymptotics.
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Takeaways for this part of class

® Supervised learning can be useful as a first-stage
in econometric estimation problems.

® But simple plug-in estimators are often poorly behaved.

® Well-behaved estimators can be constructed using

1. Orthogonal scores, and
2. Sample splitting and averaging.

® Examples:

1. Partial linear regression.
2. Average treatment effect und unconfoundedness.

3. Local average treatment effect under conditional instrument exogeneity. 2/20
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Setup

® Many settings in econometrics:

® The object of interest is low-dimensional (or real-valued),

® but high-dimensional parameters are of intermediate relevance.

® General two stage structure:

1. The high-dimensional g¢ is given by the solution
to some supervised learning problem.

2. The low-dimensional parameter of interest 6y then solves

E[p(W,60,80)] = 0.

® Can we estimate gg using supervised machine learning, and plug it in?
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Plugin estimation

® Most obvious estimator of 6y:

1. First estimate go using some supervised ML method.

2. Then plug in the estimate and solve for 6 in

E,[9(W;,6,8)] =0.

® This causes two problems, however:

1. Bias of § might distort 6.

2. The statistical dependence of g and W; might distort 6.
® Both of these issues might cause large biases.

® | et us consider some examples, before solving these problems.
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Example 1: Partially linear regression

® Model:
Y =D-6y+go(X)+U, E[U|X,D] =0.
® Plugin estimator:
1. Estimate gg, using some supervised ML method.
2. Then solve E,[¢(W;,00,8)] =0, where E, is the sample average across observations

W;, and
¢(W.0,8) = (Y —D-6—g(X))-D,

® Thus
6 =E, [D}]”"-E.Di- (Y — 5(X)]
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Example 2: Average treatment effect

® Model:
Y =go(D,X)+U E[U|X,D]=0
0y = E[gO(LX) _gO(OaX)]
® Under unconfoundedness, 6 is the average treatment effect.
® Plugin estimator:
1. Estimate go, using some supervised ML method.
2. Then solve E,[¢(W;,00,8)] =0, where

o(W,0,8) =g(1,X) —g(0,X) — 0.
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Example 3: Local average treatment effect

® Model:

Y=g)(Z,X)+U, D=gi(z,X)+V, E[U,V)X,Z]=0,
Elg(1,X) —&(0.X)]
E[gd(1,X) — g5(0,X)]

0o =

® Under conditional instrument exogeneity, exclusion restriction, 6y is the local
average treatment effect.

® Plugin estimator:

1. Estimate go, using some supervised ML method.

2. Then solve E,[¢(W;,00,8)] =0, where
O(W,0,8) =" (1,X) —g'(0,X) — (8°(1,X) —¢*(0.X) ) - 6.
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Approximating 6

® Telescope sum; Taylor approximation;
approximating sample averages by expectations:

0=E,[¢(W;,0,8)] =E, [¢(W:,0,8) — ¢(W;,0,g0)]
+E, [0(W,0,80) — ¢(Wi, 60, 20)] + En [¢(Wi, 60, 20)]
~ E [0,0(W;, 60,80) - (§ — 80)]
+E 999 (Wi,00,80)] - (6 — 60) + E, [ (Wi, 60, 80)]

* Solving for 6 — 6y:
(6—60) ~ E[999(W:,00,20)] " - [En[$(Wi, 60, 80)] +
+ E [0, (Wi, 60,80) - (€ — 80)]]

® We can further decompose the last term, which is the cause of bias:

E [0,0(W;,60,80) - (& —80)]
=FE [d,0(W;,600,80)] - (E[8] — g0) + E [d0 (Wi, 00, 80) - (8§ — E[8])]
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Practice problem

Write out this decomposition for average treatment effect estimation and the plugin
estimator.

1. Recall what is ¢ and g here.
2. What is dg¢, what is d,¢7

3. What do we get for the red and magenta terms?
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Problem 1: Bias in the first stage

As we discussed previously, ML estimators use regularization, and therefore are
biased: E[g] # go.

Suppose however that we had a score function which satisfies “Neyman
orthogonality:”
E [ag(p(ulla 607g0)] =0.

Then
E[d,¢(W;, 00,80)] - (E[8] — g0) = 0.

= Bias of ¢ does not matter to first order.
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Problem 2: Statistical dependence of first stage and data

® |n general, W; and g are not statistically independent,
and g has non-negligible variance.

Therefore E [d,¢(W;,00,80) - (§ —E[8])] # 0.

Suppose however we used sample splitting:

1. Estimate ¢ on one part of the data.

2. Average ¢(W;,0,8) over the remaining data.

Then this term automatically vanishes!
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Debiased Machine Learning
Combining these two ideas: (Definition 3.2 in the paper.)

1.

Start with an estimation problem of the form E[¢ (W, 6y,g0)] = O.

. Derive an orthogonal Neyman score v, which satisfies

E[y(W,60,1m0)] =0,
E [an W(w/h 607 770)] =0.

We will discuss next how to do this.

. Split the sample into K subsamples I.

Estimate f}; based on I{. Denote E, the sample average over I;.

Estimate 8 by solving
k
Y Eni [w(W,8.8)] =0.
k=1
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How to derive orthogonal scores

® Suppose that

(60, Bo) = argmax E[L(W,0,0)].

0.5

® 3 takes the role of g here.
We focus on the parametric case for ease of exposition.

® Two approaches to deriving an orthogonal score:

1. Construction from moment functions.

2. Concentrating out.
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Construction from moment functions

® Suppose that
(GOaﬁO) = argmax E[L(Wv 97ﬁ)]7
0.8
and thus
E[agL(W, OO)ﬁO)] = 07 E[aﬁL(W7 607ﬁ0)] =0.

® Define
V’(Wa 97") = aGL(Wu 97B) —u- aﬁL(W7 euﬁ)v
where n = (u, ), and Ly solves
8BE[89L(W, 90,[30)] — Ho - 83E[8ﬁL(W, 90,[30)] =0.

® Then

)

E[y(W,69,m0)] =0
E [0y y(W;,60,M0)] = 0.
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Construction by concentrating out

® Suppose again that
(60, o) = argmax E[L(W,6,)].
6.8

® Define

B(6) = arglglax E[L(W,6,B)],

w(W,0,m) = de (L(W,6,B(6)))
=JdgL(W,0,B)+deB(0)-dgL(W,0,B),

where n = (3,39 3(0)).

® Then, again

E[W(W7 907 T]O)] = 07
E [0y w(W;,60,1M0)] = 0.

15/20



Example 1: Partially linear regression
® Recall the model
Y =D-6y+g0(X)+U, E[U|X,D] = 0.

® Define
my(X) = E[D|X].

® Then
W(W,0,m) = (Y —D-0 — g(X))- (D—m(X))

satisfies the orthogonality condition.

® In the first stage, we need to estimate go(X) and m(X).

16 /20



Example 2: Average treatment effect

® Recall the model
Y =go(D,X)+U E[U|X,D] =0
90 :E[g()(laX) _gO(OaX)]

® Define
my(X) = E[D|X].

® Then

satisfies the orthogonality condition.

® This is the famous “doubly robust” estimation approach.
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Asymptotics for debiased ML estimators
Theorem 3.3.

® Assume a number of regularity conditions.

® Consider a Debiased Machine Learning estimator.

® Then
V(6 - 6) ~A N(0,62),
® where
o =7 Var(y(W,60,1m0))-J !,
for

J= aeE[Vj(W) 90) nO)]
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Intuition of proof

® Recall our earlier expansion

(é - 60) ~E [aGII/(VVlv 907770)]_1 ’ [En [W(VVH 907770)] -+
+E [Oqy(Wi, 80, m0) - (77 —o)]].-

® Using the Debiased Machine Learning approach, we have killed the blue term.

® The other terms give asymptotic normality and the variance by standard
arguments.
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