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Outline

The online learning problem:
Sequential prediction.

The adversarial framework:
Regret guarantees for all possible sequences of outcomes.
No sampling process is assumed.

General theory for the case of convex action spaces (e.g. probabilistic forecasts).
Potentials as a method for proving adversarial regret bounds.

® A very versatile algorithm: Thompson sampling.
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Takeaways for this part of class

Online learning is the most basic sequential decision problem:
The observable history does not depend on actions.

We can have performance guarantees
without any assumptions about the data generating process.

To do so, our algorithms need to perform well
whenever there is a “competitor” that performs well.

How to achieve this?
Make predictions similar to those of successful competitors.

Thompson sampling choses actions based on the posterior probability that they
are optimal. This principle is successful in a wide variety of settings.

Bonus slides: Worst case sequences delay learning as long as possible.
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Setup

® Sequential predictions at times t = 1,2,...

® Qutcomes: Y, € Y.

Predictions: ¥ € Y.

Experts h € JH, delivering predictions
?/Lt c H
(~ hypotheses / predictors).

Any predictive features X; are left implicit in the expert predictions.

We assume (for today’s discussion)

1. X is finite,
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Loss and regret

® We want to make a prediction ¥;, using the expert predictions Yh’t,

having observed 8,1 = (Y1,...,Y,—1).

Loss at time 7: L(¥,,Y;).

Regret at time ¢ relative to h:

rny =LY, Y,) = L(Yy,, Yr).

Cumulative regret at time ¢ relative to h:

t
Ry, = Z Thy-
s=1

Cumulative regret relative to H:

Ry, = maxRy,;.
H,t e hit 4/25



Successful learning

e Qur goal: Find learning algorithms delivering ¥,
® such that average cumulative regret vanishes
¢ for all possible realizations of S, = (Y1,...,Y;):

1
sup ;Rg{v, — 0.

S

® No probability is involved,
this is the worst case over all possible realizations of outcomes!!

® How could that even be possible?!?
The past carries no information about the future?!?!

5/25



A chaotic, evil world

® No assumption is made about how the outcomes Y; are generated.

® We are interested in worst case behavior over all possible sequences Y;,Y3,...

“Imagine another set of results. The first time, the white ball drove
the black ball into the pocket. The second time, the black ball bounced
away. The third time, the black ball flew onto the ceiling. The fourth
time, the black ball shot around the room like a frightened sparrow, hi-
nally taking refuge in vour jacket pocket. The fifth time, the black ball
flew away at nearly the speed of light, breaking the edge of the pool ta-
ble, shooting through the wall, and leaving the Earth and the Solar Sys-
tem, just like Asimov once described.”® What would you think then?”

Ding watched Wang. After a long silence, Wang hnally said, “This
actually happened. Am [ right?”

Liu Cixin, The Three Body Problem 6/25
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Weighted average predictors

® We will consider weighted average predictors of the form

6 YheH Whi—1Yny
Yt p—
Lhert Whi—1

® where the weights of each expert are increasing
in the cumulative regret relative to that expert

!
Wh,t = (P (RhJ)a
® with ¢ nonnegative, convex, and increasing.

® This gives a larger weight to experts that performed well in the past.
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Convex loss functions
Lemma 2.1

e Suppose that the loss function is convex in ¥},

e and ¥, is given by a weighted average predictor of this form.

Then

sup Z Thpy (P/(Rh,t—l) < 0.
Y pex

® Proof:

® By convexity of L, Jensen's inequality, :
Y w1 LY, Y) =LY, %) < Y w1 - Ly, Y.
heH heH

® Weights are proportional to ¢'(Rj,_1).
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Potential function

® Use boldface for vectors, with components corresponding to i € H.

Potential function (a proof device):

Bu) = w(Z ¢<uh>) .

heXH

With this notation R
A <V¢(Rl_]>7 Y[>

"= om0

The lemma then can be rewritten as the Blackwell condition

Sup <r,, V(b(Rt71)> S 0
Y,

NOte that Rl - Rtfl —|—r,.
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lllustrating the Blackwell condition

0

Figure 2.1. An illustration of the Blackwell condition with N = 2. The dashed line shows the
points in regret space with potential equal to 1. The prediction at time ¢ changed the potential from

P(R,_;) = 1to P(R;) = P(R,_1 + 1;). Though ®(R,) > P(R,_,), the inner product between r, and
the gradient V®(R,_,) is negative, and thus the Blackwell condition holds.
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Bounding the potential
Theorem 2.1.

e Suppose that ¥, satisfies the Blackwell condition.

® Then, for all ¢,

@(R) < @(0)+ 1 Y Clr)
s=1
® where
C(r) =supy/ < Y ¢(”h)> Y 0" (wn)ry.
u hedH heH
® Proof:

® Second order Taylor expansion of ®(R,) = ®(R,_;+1r;) in ry.

® Bounding the first-order term using the Blackwell condition.
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Exponential weighting

® Special case: Exponential weights.

Potential (with tuning parameter n7):
1
n hex

® Corresponding weights:

exp(n-Rp—1) _exp(—n Lo L(F, X))
Ywescexp(N-Ryws—1)  Lyescexp (=1 - X2 LTy, X))

Whi—1 =

® These weights only depend on the loss of each expert,
but not on our prediction ¥;.

For quadratic error loss, this is Bayesian model averaging,

for normal likelihood with variance 2/1, uniform prior over experts. 122



Bounding regret for exponential weighting

Corollary 2.2.

® Assume that L is convex in ¥ and bounded by [0, 1].

® Then, for all n and for all §; = (Y1,..., %),

log([3¢]) ,
1

Ry (8;) < 7

e Forn = /zlog(t\f}f\)'
Ry, (8¢) < +/2tlog(|H]).
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Proof
* By assumption, ¢(x) =exp(n -x), y(x) = ¢~ ' (x) =log(x)/n.

® For any estimator with weights based on a potential, and w(x) = ¢ (x),

maxRy,; = maxR
heX hi W<¢ <hef}f hJ))

Sy < Z ¢ (Rh,t)> = D(R,).

heH

® Calculation yields C(r;) < n (using |r,| < 1),
and ®(0) = log(|[)/n.

® The theorem implies
P(R) < P(0)+ - ZC

loo(|HI) n 14 /25



Discussion

We can do essentially as well as the best of our experts.

® No matter how the sequence Y; is generated!

No stability or invariance in the world is assumed.

A possible way to address the induction problem?

® We are guaranteed to do well if anyone can do well.
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Is this good enough?

The man who has fed the chicken every day throughout its life at last
wrings its neck instead, showing that more refined views as to the uniformity
of nature would have been useful to the chicken.

Bertrand Russell, The Problems of Philosophy.

® Should our regret bound provide consolation to the chicken?
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Bit prediction

® The simplest special case of online learning.

e Binary outcomes and predictions, ¥;,¥, € {0,1}.

Mis-classification error loss: L(Y;,Y;) = 1(¥, #Y,).

® No predictors.

[=] Cumulative regret at time :

yE{O.,l}

R, = max <Z (1%, #Y,) — l(y;zéYs)]> .

s=1

Denote lt - Zi:] Yt, O[ =1 — 1[. Then

min (i 1(y # YS)) =min(0y, 1,).

ye{0,1}

o—1
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A Bayesian model

e Consider the following model, which we will use for the construction of an
algorithm
but not for the evaluation of this algorithm!

i.i.d. draws: N
Yt iid. Ber(@)

Uniform prior:
0 ~UJ[0,1].

Then the time 741 posterior for 8 is given by
0|Y17,YZ‘NB€[C1(1+1[,1+0[)

® Posterior mean: 141
t

E[6|Y1,....Y, 1] = it

18/25



Thompson sampling

e A very simple, general and successful approach
for solving online learning and active learning problems.

® Denote by 8,_; the history (information) observed by the beginning of period z.

Let p,(y) be the posterior probability that y is the optimal action:

Stl) .

® Thompson sampling chooses ¥, =y with probability p;(y).
The sampling probability is set equal to
the posterior probability that an action is optimal.

p(y)=P (y = argmin E [L(7,Y:)|6]

® Thompson sampling can be implemented by
1. Sampling one draw 6, from the posterior for 6.

oy . s . el /o wv Nl A
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Expected regret for a given sequence

® For binary bit prediction:

argmin E[L(5,Y;)|0] = 1(6 > 1)
y

and thus

p(0) =P(6 < 318i-1) = Frera(1+1, 1140, 1) (3)-
Pt(l) =1 —FBeza(1+1,,171+0,,1)<%)-

® Fix the sequence Yi,...,Yr and assume wlog that 17 > T7/2 > Or.

e Consider two sequences (¥;) and (Y/), which are the same,
except the order of ¥; and Y, is swapped in sequence (Y/).
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Swapping

* Suppose wlog (¥, ¥+1) = (0,1).
Let 1, =k, O, =s—k.

® Then the difference in expected regret between the two sequences equals
R~ R = [P(f] = 0)+ P(¥,. = 1)
— [P = 1)+ P = 0)]
= [Fpera(i-rk1+5-#)(3) + (1 = Fpera2-, 1451 (3)))]
- [(1 - FBetu(lJrk,lJrka)(%)) +FBela(l+k,2+sfk)(%))]
= 2FBeta(1-4+k2+5—k) (%))

- [FBela(2+k,l+s7k) (%)) + FBem(l+k,2+s7k) (%))] .

® By the properties of the Beta distribution (Fact 2), we can rewrite this as

1 1 1
R —R, = . _
LT 25 B(1 k1 s —k) {lJrk 1+sk]
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Swapping continued

e |t follows that the difference R; — R, is negative iff k > s/2.
(cf. Lemma 4 in the paper).

® |n words: If there were more 1s than Os thus far,
it is worse if the “unexpected” observation Y; =0
comes before the “expected” Y, =1.

® We can use this observation to figure out the worst case sequence (Yi,...,Yr),
among all sequences with 17 =k > T /2.

® Theorem 5 in the paper does exactly that:
The worst-case sequences are exactly the sequences such that

1. The sequence ends with 2k — T 1s.

2. Before that, all pairs (¥;,Ys41) (for s odd) are equal to either (0,1) or (1,0).
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Practice problem

e Consider any sequence with 17 = k that is not of this form.

® Show that for such a sequence there exists a swap which increases regret.
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Intuition and implications

® The algorithm tries to learn whether 17 > Or, or the other way around.

® The worst case sequence delays learning as much as possible,
by alternating Os and 1s.

® One can calculate / bound regret for such a worst-case sequence.
By Theorem 6 in the paper:

Ry =0 (\/min(17,07)) = O(VT).
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