
Foundations of machine learning

Adversarial online learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026



Outline

• The online learning problem:
Sequential prediction.

• The adversarial framework:
Regret guarantees for all possible sequences of outcomes.
No sampling process is assumed.

• General theory for the case of convex action spaces (e.g. probabilistic forecasts).
Potentials as a method for proving adversarial regret bounds.

• A very versatile algorithm: Thompson sampling.
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Takeaways for this part of class

• Online learning is the most basic sequential decision problem:
The observable history does not depend on actions.

• We can have performance guarantees
without any assumptions about the data generating process.

• To do so, our algorithms need to perform well
whenever there is a “competitor” that performs well.

• How to achieve this?
Make predictions similar to those of successful competitors.

• Thompson sampling choses actions based on the posterior probability that they
are optimal. This principle is successful in a wide variety of settings.

• Bonus slides: Worst case sequences delay learning as long as possible. 2 / 25
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Setup

• Sequential predictions at times t = 1,2, . . .

• Outcomes: Yt ∈ Y.

• Predictions: Ŷ ∈ Y.

• Experts h ∈H, delivering predictions

Ŷh,t ∈ Y.

(∼ hypotheses / predictors).

• Any predictive features Xt are left implicit in the expert predictions.

• We assume (for today’s discussion)

1. H is finite,

2. Y is a convex subset of a vector space.
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Loss and regret

• We want to make a prediction Ŷt , using the expert predictions Ŷh,t ,

• having observed St−1 = (Y1, . . . ,Yt−1).

• Loss at time t: L(Ŷt ,Yt).

• Regret at time t relative to h:

rh,t = L(Ŷt ,Yt)−L(Ŷh,t ,Yt).

• Cumulative regret at time t relative to h:

Rh,t =
t

∑
s=1

rh,s.

• Cumulative regret relative to H:

RH,t = max
h∈H

Rh,t . 4 / 25



Successful learning

• Our goal: Find learning algorithms delivering Ŷt

• such that average cumulative regret vanishes

• for all possible realizations of St = (Y1, . . . ,Yt):

sup
St

1
t

RH,t → 0.

• No probability is involved,
this is the worst case over all possible realizations of outcomes!!

• How could that even be possible?!?
The past carries no information about the future?!?!
There is no stability at all over time?!?!?!
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A chaotic, evil world

• No assumption is made about how the outcomes Yt are generated.

• We are interested in worst case behavior over all possible sequences Y1,Y2, . . .

Liu Cixin, The Three Body Problem 6 / 25
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Weighted average predictors

• We will consider weighted average predictors of the form

Ŷt =
∑h∈H wh,t−1 · Ŷh,t

∑h∈H wh,t−1
,

• where the weights of each expert are increasing
in the cumulative regret relative to that expert

wh,t = φ
′(Rh,t),

• with φ nonnegative, convex, and increasing.

• This gives a larger weight to experts that performed well in the past.
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Convex loss functions
Lemma 2.1

• Suppose that the loss function is convex in Ŷt ,

• and Ŷt is given by a weighted average predictor of this form.

• Then

sup
Yt

∑
h∈H

rh,t ·φ ′(Rh,t−1)≤ 0.

• Proof :

• By convexity of L, Jensen’s inequality, :

∑
h∈H

wh,t−1 ·L(Ŷt ,Yt) = L(Ŷt ,Yt)≤ ∑
h∈H

wh,t−1 ·L(Ŷh,t ,Yt).

• Weights are proportional to φ ′(Rh,t−1).
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Potential function

• Use boldface for vectors, with components corresponding to h ∈H.

• Potential function (a proof device):

Φ(u) := ψ

(
∑

h∈H
φ(uh)

)
.

• With this notation

Ŷt =

〈
∇Φ(Rt−1), Ŷ t

〉
⟨∇Φ(Rt−1), 1⟩

• The lemma then can be rewritten as the Blackwell condition

sup
Yt

⟨rt ,∇Φ(Rt−1)⟩ ≤ 0.

• Note that Rt = Rt−1 + rt .
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Illustrating the Blackwell condition
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Bounding the potential
Theorem 2.1.

• Suppose that Ŷt satisfies the Blackwell condition.

• Then, for all t,

Φ(Rt)≤ Φ(0)+
1
2

t

∑
s=1

C(rs)

• where

C(r) = sup
u

ψ
′

(
∑

h∈H
φ(uh)

)
∑

h∈H
φ
′′(uh)r2

h.

• Proof :

• Second order Taylor expansion of Φ(Rt) = Φ(Rt−1 + rt) in rt .

• Bounding the first-order term using the Blackwell condition.

• Bounding the second-order term by the supremum.

• Telescope sum.
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Exponential weighting

• Special case: Exponential weights.

• Potential (with tuning parameter η):

φ(u) =
1
η

log

(
∑

h∈H
exp(η ·uh)

)
.

• Corresponding weights:

wh,t−1 =
exp(η ·Rh,t−1)

∑h′∈H exp
(
η ·Rh′,t−1

) = exp
(
−η ·∑t−1

s=1 L(Ŷh,t ,Yt)
)

∑h′∈H exp
(
−η ·∑t−1

s=1 L(Ŷh′,t ,Yt)
) .

• These weights only depend on the loss of each expert,
but not on our prediction Ŷt .

• For quadratic error loss, this is Bayesian model averaging,
for normal likelihood with variance 2/η , uniform prior over experts.
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Bounding regret for exponential weighting

Corollary 2.2.

• Assume that L is convex in Ŷ and bounded by [0,1].

• Then, for all η and for all St = (Y1, . . . ,Yt),

RH,t(St)≤
log(|H|)

η
+

tη
2
.

• For η =
√

2 log(|H|)
t ,

RH,t(St)≤
√

2t log(|H|).
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Proof

• By assumption, φ(x) = exp(η · x), ψ(x) = φ−1(x) = log(x)/η .

• For any estimator with weights based on a potential, and ψ(x) = φ−1(x),

max
h∈H

Rh,t = ψ

(
φ

(
max
h∈H

Rh,t

))
≤ ψ

(
∑

h∈H
φ (Rh,t)

)
= Φ(Rt).

• Calculation yields C(rt)≤ η (using |rh,t | ≤ 1),
and Φ(0) = log(|H|)/η .

• The theorem implies

Φ(Rt)≤ Φ(0)+
1
2

t

∑
s=1

C(rs)

≤ log(|H|)
η

+ t
η

2
.

14 / 25



Discussion

• We can do essentially as well as the best of our experts.

• No matter how the sequence Yt is generated!

• No stability or invariance in the world is assumed.

• A possible way to address the induction problem?

• We are guaranteed to do well if anyone can do well.
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Is this good enough?

The man who has fed the chicken every day throughout its life at last
wrings its neck instead, showing that more refined views as to the uniformity
of nature would have been useful to the chicken.

Bertrand Russell, The Problems of Philosophy.

• Should our regret bound provide consolation to the chicken?

16 / 25
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Bit prediction

• The simplest special case of online learning.

• Binary outcomes and predictions, Yt ,Ŷt ∈ {0,1}.

• Mis-classification error loss: L(Ŷt ,Yt) = 1(Ŷt ̸= Yt).

• No predictors.

• [⇒] Cumulative regret at time t:

Rt = max
y∈{0,1}

(
t

∑
s=1

[
1(Ŷs ̸= Ys)−1(y ̸= Ys)

])
.

• Denote 1t = ∑
t
s=1Yt , 0t = t −1t . Then

min
y∈{0,1}

(
t

∑
s=1

1(y ̸= Ys)

)
= min(0t ,1t).
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A Bayesian model

• Consider the following model, which we will use for the construction of an
algorithm
but not for the evaluation of this algorithm!

• i.i.d. draws:
Yt ∼i.i.d. Ber(θ)

• Uniform prior:
θ ∼U [0,1].

• Then the time t +1 posterior for θ is given by

θ |Y1, . . . ,Yt ∼ Beta(1+1t ,1+0t).

• Posterior mean:

E [θ |Y1, . . . ,Yt−1] =
1+1t

2+ t
.
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Thompson sampling

• A very simple, general and successful approach
for solving online learning and active learning problems.

• Denote by St−1 the history (information) observed by the beginning of period t.
Let pt(y) be the posterior probability that y is the optimal action:

pt(y) = P

(
y = argmin

ỹ
E[L(ỹ,Yt)|θ ]

∣∣∣St−1

)
.

• Thompson sampling chooses Ŷt = y with probability pt(y).
The sampling probability is set equal to
the posterior probability that an action is optimal.

• Thompson sampling can be implemented by

1. Sampling one draw θ̂t from the posterior for θ .

2. Choosing Ŷt = argmin ỹ E[L(ỹ,Yt)|θ = θ̂t ].
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Expected regret for a given sequence

• For binary bit prediction:

argmin
ỹ

E[L(ỹ,Yt)|θ ] = 1(θ > 1
2)

and thus

pt(0) = P(θ < 1
2 |St−1) = FBeta(1+1t−1,1+0t−1)(

1
2).

pt(1) = 1−FBeta(1+1t−1,1+0t−1)(
1
2).

• Fix the sequence Y1, . . . ,YT and assume wlog that 1T > T/2 > 0T .

• Consider two sequences (Yt) and (Y ′
t ), which are the same,

except the order of Ys and Ys+1 is swapped in sequence (Y ′
t ).
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Swapping

• Suppose wlog (Ys,Ys+1) = (0,1).
Let 1s = k, 0s = s− k.

• Then the difference in expected regret between the two sequences equals

R′
t −Rt =

[
P(Ŷ ′

s = 0)+P(Ŷ ′
s+1 = 1)

]
−
[
P(Ŷs = 1)+P(Ŷs+1 = 0)

]
=
[
FBeta(1+k,1+s−k)(

1
2 )+(1−FBeta(2+k,1+s−k)(

1
2 ))
]

−
[
(1−FBeta(1+k,1+s−k)(

1
2 ))+FBeta(1+k,2+s−k)(

1
2 ))
]

= 2FBeta(1+k,2+s−k)(
1
2 ))

−
[
FBeta(2+k,1+s−k)(

1
2 ))+FBeta(1+k,2+s−k)(

1
2 ))
]
.

• By the properties of the Beta distribution (Fact 2), we can rewrite this as

R′
t −Rt =

1
2s ·B(1+ k,1+ s− k)

·
[

1
1+ k

− 1
1+ s− k

]
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Swapping continued

• It follows that the difference R′
t −Rt is negative iff k > s/2.

(cf. Lemma 4 in the paper).

• In words: If there were more 1s than 0s thus far,
it is worse if the “unexpected” observation Ys = 0
comes before the “expected” Ys+1 = 1.

• We can use this observation to figure out the worst case sequence (Y1, . . . ,YT ),
among all sequences with 1T = k > T/2.

• Theorem 5 in the paper does exactly that:
The worst-case sequences are exactly the sequences such that

1. The sequence ends with 2k−T 1s.

2. Before that, all pairs (Ys,Ys+1) (for s odd) are equal to either (0,1) or (1,0).
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Practice problem

• Consider any sequence with 1T = k that is not of this form.

• Show that for such a sequence there exists a swap which increases regret.

23 / 25



Intuition and implications

• The algorithm tries to learn whether 1T > 0T , or the other way around.

• The worst case sequence delays learning as much as possible,
by alternating 0s and 1s.

• One can calculate / bound regret for such a worst-case sequence.
By Theorem 6 in the paper:

RT = O
(√

min(1T ,0T )
)
= O(

√
T ).
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