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Takeaways

® Thompson sampling choses actions based on the posterior probability that they
are optimal. This principle is successful in a wide variety of settings.

® Worst case sequences delay learning as long as possible.
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Bit prediction

® The simplest special case of online learning.

® Binary outcomes and predictions, ¥;,¥, € {0,1}.
® Mis-classification error loss: L(¥;,Y;) = 1(¥; #Y,).
® No predictors.

= Cumulative regret at time t:

R, = max <i (Vs £Y5) —1(y7éY)]>.

ye{0,1}

® Denote I, =Y"_,Y;, 0,=r—1,. Then
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A Bayesian model

® Consider the following model, which we will use for the construction of an
algorithm
but not for the evaluation of this algorithm!

® j.i.d. draws:
Y, ~bid: Ber(0)

Uniform prior:
0 ~UI0,1].

Then the time 741 posterior for 8 is given by
0|Y1,...,Y; ~ Beta(1+1,,14+0;).
® Posterior mean:

14+1,
241

E[0|Y),....Y,_|] =
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Thompson sampling
® A very simple, general and successful approach

for solving online learning and active learning problems.

® Denote by 8,_; the history (information) observed by the beginning of period 7.
Let p;(y) be the posterior probability that y is the optimal action:

8[1) .

® Thompson sampling chooses ¥, =y with probability p;(y).
The sampling probability is set equal to
the posterior probability that an action is optimal.

p(y)=P (y = argmin E [L(7,Y:)|6]

® Thompson sampling can be implemented by
1. Sampling one draw 6, from the posterior for 6.

2. Choosing ¥, = argmin ; E[L(7,Y;)[6 = 6,].
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Expected regret for a given sequence

® For binary bit prediction:

argmin E[L(5,Y,)|6] = 1(6 > 3)
y

and thus
p:(0)=P(6 < %|8171) = FBeta(1+1,,1,1+0,,1)(%)-
Pr(1) = 1= Foaiii1, 140, 1) (3)-
® Fix the sequence Yi,...,Yr and assume wlog that 17 > T/2 > 0.

e Consider two sequences (Y¥;) and (Y/), which are the same,
except the order of ¥; and Y, is swapped in sequence (/).
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Swapping
® Suppose wlog (¥s, Y1) = (0,1).
Let 1I,=%, O, =s—k.
® Then the difference in expected regret between the two sequences equals
Ri—Ri = [P(V{ =0)+P(¥{,, =1)]
— [P(Ys = 1)+ P(Ys11 = 0)]
::[Fbaau+kl+sfm(*)4‘(1“Fbaaa+kl+s m(%)ﬂ
“[(1 Fbaam+kl+s @( ))*‘Fbaau+k2+s M(l)ﬂ
= 2Fgera(1+k2+5—4) (3))
— [Faeta(2ri 15— (3)) + Fpera(+x245-1) (3))] -

® By the properties of the Beta distribution (Fact 2), we can rewrite this as

1 1 1
R —R, = : _
LT s B(1 k1 s —k) {1+k l—l—s—k]
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Swapping continued

e |t follows that the difference R, — R, is negative iff k > s/2.
(cf. Lemma 4 in the paper).

® |n words: If there were more 1s than Os thus far,
it is worse if the “unexpected” observation Yy =0
comes before the “expected” Y1 = 1.

® We can use this observation to figure out the worst case sequence (Y1,...,Yr),
among all sequences with 17 =k > T /2.

® Theorem 5 in the paper does exactly that:
The worst-case sequences are exactly the sequences such that

1. The sequence ends with 2k —T 1s.
2. Before that, all pairs (¥;,Y5+1) (for s odd) are equal to either (0,1) or (1,0).
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Practice problem

e Consider any sequence with 17 = k that is not of this form.

® Show that for such a sequence there exists a swap which increases regret.
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Intuition and implications

® The algorithm tries to learn whether 17 > Or, or the other way around.

® The worst case sequence delays learning as much as possible,
by alternating Os and 1s.

® One can calculate / bound regret for such a worst-case sequence.
By Theorem 6 in the paper:

Rr =0 (v/min(ir,01]) =0/
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