Foundations of machine learning Adversarial online learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

- Thompson sampling choses actions based on the posterior probability that they are optimal. This principle is successful in a wide variety of settings.
- Worst case sequences delay learning as long as possible.

Bit prediction

- The simplest special case of online learning.
- Binary outcomes and predictions, $Y_t, \hat{Y}_t \in \{0, 1\}$.
- Mis-classification error loss: $L(\hat{Y}_t, Y_t) = 1(\hat{Y}_t \neq Y_t)$.
- No predictors.
- ⇒ Cumulative regret at time *t*:

$$
R_t = \max_{y \in \{0,1\}} \left(\sum_{s=1}^t \left[1(\hat{Y}_s \neq Y_s) - 1(y \neq Y_s) \right] \right).
$$

• Denote $1_t = \sum_{s=1}^t Y_t$, $0_t = t - 1_t$. Then

$$
\min_{y \in \{0,1\}} \left(\sum_{s=1}^t 1(y \neq Y_s) \right) = \min(0_t, 1_t).
$$

A Bayesian model

- Consider the following model, which we will use for the construction of an algorithm but not for the evaluation of this algorithm!
- i.i.d. draws:

$$
Y_t \sim^{i.i.d.} Ber(\theta)
$$

• Uniform prior:

 $\theta \sim U[0,1].$

• Then the time $t + 1$ posterior for θ is given by

$$
\theta|Y_1,\ldots,Y_t\sim Beta(1+1_t,1+0_t).
$$

• Posterior mean:

$$
E[\theta|Y_1,\ldots,Y_{t-1}]=\frac{1+1_t}{2+t}.
$$

Thompson sampling

- A very simple, general and successful approach for solving online learning and active learning problems.
- Denote by S*t*−¹ the history (information) observed by the beginning of period *t*. Let $p_t(y)$ be the posterior probability that y is the optimal action:

$$
p_t(y) = P\left(y = \underset{\tilde{y}}{\text{argmin}} E[L(\tilde{y}, Y_t)|\theta] | \mathcal{S}_{t-1}\right).
$$

- Thompson sampling chooses $\hat{Y}_t = y$ with probability $p_t(y)$. The *sampling probability* is set equal to the posterior probability that an action is optimal.
- Thompson sampling can be implemented by
	- 1. Sampling one draw $\hat{\theta}_t$ from the posterior for θ .

2. Choosing
$$
\hat{Y}_t = \operatorname{argmin}_{\tilde{y}} E[L(\tilde{y}, Y_t)|\theta = \hat{\theta}_t].
$$

Expected regret for a given sequence

• For binary bit prediction:

$$
\underset{\tilde{y}}{\text{argmin}} E[L(\tilde{y}, Y_t)|\theta] = 1(\theta > \frac{1}{2})
$$

and thus

$$
p_t(0) = P(\theta < \frac{1}{2} | \mathcal{S}_{t-1}) = F_{Beta(1+1_{t-1},1+0_{t-1})}(\frac{1}{2}).
$$

$$
p_t(1) = 1 - F_{Beta(1+1_{t-1},1+0_{t-1})}(\frac{1}{2}).
$$

- Fix the sequence Y_1, \ldots, Y_T and assume wlog that $1_T > T/2 > 0_T$.
- Consider two sequences (Y_t) and (Y'_t) , which are the same, except the order of Y_s and Y_{s+1} is swapped in sequence (Y'_t) .

Swapping

- Suppose wlog $(Y_s, Y_{s+1}) = (0, 1)$. Let $1_s = k$, $0_s = s - k$.
- Then the difference in expected regret between the two sequences equals

$$
R'_{t} - R_{t} = [P(\hat{Y}'_{s} = 0) + P(\hat{Y}'_{s+1} = 1)]
$$

\n
$$
- [P(\hat{Y}_{s} = 1) + P(\hat{Y}_{s+1} = 0)]
$$

\n
$$
= [F_{Beta(1+k,1+s-k)}(\frac{1}{2}) + (1 - F_{Beta(2+k,1+s-k)}(\frac{1}{2}))]
$$

\n
$$
- [(1 - F_{Beta(1+k,1+s-k)}(\frac{1}{2})) + F_{Beta(1+k,2+s-k)}(\frac{1}{2}))]
$$

\n
$$
= 2F_{Beta(1+k,2+s-k)}(\frac{1}{2}))
$$

\n
$$
- [F_{Beta(2+k,1+s-k)}(\frac{1}{2})) + F_{Beta(1+k,2+s-k)}(\frac{1}{2}))].
$$

• By the properties of the Beta distribution (*Fact 2*), we can rewrite this as

$$
R'_{t} - R_{t} = \frac{1}{2^{s} \cdot B(1 + k, 1 + s - k)} \cdot \left[\frac{1}{1 + k} - \frac{1}{1 + s - k}\right]
$$

Swapping continued

- It follows that the difference $R'_t R_t$ is negative iff $k > s/2$. (cf. Lemma 4 in the paper).
- In words: If there were more 1s than 0s thus far, it is worse if the "unexpected" observation $Y_s = 0$ comes before the "expected" $Y_{s+1} = 1$.
- We can use this observation to figure out the worst case sequence (Y_1, \ldots, Y_T) , among all sequences with $1_T = k > T/2$.
- Theorem 5 in the paper does exactly that: The worst-case sequences are exactly the sequences such that
	- 1. The sequence ends with $2k T$ 1s.
	- 2. Before that, all pairs (Y_s,Y_{s+1}) (for s odd) are equal to either $(0,1)$ or $(1,0).$

Practice problem

- Consider any sequence with $1_T = k$ that is not of this form.
- Show that for such a sequence there exists a swap which increases regret.

Intuition and implications

- The algorithm tries to learn whether $1_T > 0_T$, or the other way around.
- The worst case sequence delays learning as much as possible. by alternating 0s and 1s.
- One can calculate / bound regret for such a worst-case sequence. By Theorem 6 in the paper:

$$
R_T = O\left(\sqrt{\min(1_T, 0_T)}\right) = O(\sqrt{T}).
$$

- Adversarial online learning: *Cesa-Bianchi, N. and Lugosi, G. (2006).* Prediction, learning, and games*. Cambridge University Press, chapter 2.*
- Thompson sampling:
	- *Lewi, Y., Kaplan, H., and Mansour, Y. (2020). Thompson sampling for adversarial bit prediction. In* Algorithmic Learning Theory*, pages 518–553. PMLR*