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Splines and Reproducing Kernel Hilbert Spaces

Penalized least squares: For some (semi-)norm || f]|,

f= mg?in Y (%= F(X)* + AN

Leading case: Splines, e.g.,

7 =argmin Y (¥ — £(X))+ A / 7(x)2dx.
f i

Can we think of penalized regressions in terms of a prior?

If so, what is the prior distribution?
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The finite dimensional case

® Consider the finite dimensional analog to penalized regression:

0 = argmin Y (X, )+ .
i=1

where
lele =1Cc!

® \We saw before that this is the posterior mean when
® X|0 ~N(0,I),

* 9 ~N(0,C).
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The reproducing property

® The norm ||t||c corresponds to the inner product
{t,s)c =1'Cs.
® et C,= (Ci17 . aCik),-

® Then, for any vector y,
(Ci,y)c =yi-

Practice problem

Verify this.
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Reproducing kernel Hilbert spaces

® Now consider a general Hilbert space of functions equipped with an inner product
(-,-) and corresponding norm || - ||,

such that for all x there exists an M, such that for all f

) < M-I £]-

Read: “Function evaluation is continuous with respect to the norm || - ||.”

Hilbert spaces with this property are called reproducing kernel Hilbert spaces
(RKHS).

Note that L? spaces are not RKHS in general!
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The reproducing kernel

® Riesz representation theorem:
For every continuous linear functional L on a Hilbert space 7,
there exists a gy € 57 such that for all f € 7

L(f) = (8L,.f)-
® Applied to function evaluation on RKHS:
f(x)=(Cx. [)

® Define the reproducing kernel:
C(x1,x2) = (Cy,,Cx,).

® By construction:
Clx1,x2) = Cx, (x2) = Gy (x1)
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Practice problem

® Show that C(-,-) is positive semi-definite, i.e.,
for any (xi1,...,x;) and (ay,...,ax)

ZaiajC(xi,xj) Z 0.
i,J

® Given a positive definite kernel C(-,-),
construct a corresponding Hilbert space.
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Solution

® Positive definiteness:

ZaiajC(x,-,xj) = Zaiaj<CXi7CXj>
i,j iJ
2
>0.

= <Za,~Cxi,Zaijj> =
i J

e Construction of Hilbert space: Take linear combinations of the functions C(x;,)
(and their limits) with inner product

'Zaicx,-

<ZaiC(xz',')7ijC(yja')> :Za,-ajC(x,-,yj).
i J c LJ
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® Kolmogorov consistency theorem:
For a positive definite kernel C(,-)
we can always define a corresponding prior

f~GP(0,C).
® Recap:
® For each regression penalty,
® when function evaluation is continuous w.r.t. the penalty norm

® there exists a corresponding prior.

® Next:
® The solution to the penalized regression problem

® is the posterior mean for this prior.
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Solution to penalized regression
® |et f be the solution to the penalized regression

f= argmin ) (¥, — f(X))* + Al fll.

Practice problem

® Show that the solution to the penalized regression has the form
f() = c(x)-(C+nAD) "y,
where Cj; = C(X;,X;) and ¢(x) = (C(X1,x),...,C(X,,x)).

® Hints
® Write f(:) =Y a;-C(Xi,-)+p(:),
® where p is orthogonal to C(X;,) for all i.

® Show that p =0.

Solve the resulting least squares problem in ay,...,a,.
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Solution

® Using the reproducing property, the objective can be written as

Z(Y—f( D) +AlfNE
—Z V2NN

:f-(“‘< e s)) o

2
Z( Za/ (X, Xj ) +/1<Zaiajc(xiaxj)+|l?||%>
ij

=||Y*C-a\|2+7L (a'Ca+lpliz)

2

C

® Given q, this is minimized by setting p = 0.

® Now solve the quadratic program using first order conditions.
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Splines

® Now what about the spline penalty

/ £ (x)2dx?

® |s function evaluation continuous for this norm?
® Yes, if we restrict to functions such that £(0) = f/(0) =0.
® The penalty is a semi-norm that equals O for all linear functions.

® |t corresponds to the GP prior with

xlx%
2

o 3t

C(x1,x) =

for xo <xj.

This is in fact the covariance of integrated Brownian motion!
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Practice problem
Verify that C is indeed the reproducing kernel for the inner product

@wzﬂﬂ@y@m

® Takeaway: Spline regression is equivalent to the limit of a posterior mean where
the prior is such that
f(x)=Ao+A;-x+g

where
g~ GP(0,C)

and
A~N(0,v-I)

as v — oo,
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Solution
¢ Have to show: (Cy,g) = g(x)

® Plug in definition of C,
® Last 2 steps: use integration by parts, use g(0) = g¢’(0) =0
® This yields:

(Cr,8) = / Gl (8" (v)dy
L) e (55
= /0 C(x—y)g" ()dy
(g0 -0+ [ ¢ O)ay= 0 O],
=g(x).
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