Foundations of machine learning

Reinforcement learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

Outline
® Markov decision problems: Goal oriented interactions with an environment.

® Expected updates — dynamic programming.
Familiar from economics. Requires complete knowledge of transition probabilities.

® Sample updates: Transition probabilities are unknown.
® On policy: Sarsa.

® Off policy: Q-learning.
® Approximation: When state and action spaces are complex.
® On policy: Semi-gradient Sarsa.
® Off policy: Semi-gradient Q-learning.
® Deep reinforcement learning.

® Eligibility traces and TD(A).

1/20

Takeaways for this part of class

® Markov decision problems provide a general model of goal-oriented interaction
with an environment.

® Reinforcement learning considers Markov decision problems where transition
probabilities are unknown.

® A leading approach is based on estimating action-value functions.

® |f state and action spaces are small, this can be done in tabular form, otherwise
approximation (e.g., using neural nets) is required.

® We will distinguish between on-policy and off-policy learning.

2/20

Introduction

Many interesting problems can be modeled as Markov decision problems.

Biggest successes in game play (Backgammon, Chess, Go, Atari games,...), where
lots of data can be generated by self-play.

Basic framework is familiar from macro / structural micro, where it is solved using
dynamic programming / value function iteration.

Big difference in reinforcement learning:
Transition probabilities are not known, and need to be learned from data.

This makes the setting similar to bandit problems, with the addition of changing
states.

We will discuss several approaches based on estimating action-value functions.

3/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Markov decision problems

® Time periodst=1,2,...

States S; € . (This is the part that's new relative to bandits!)

Actions A[S JZ{(S[)

Rewards R,

Dynamics (transition probabilities):

P(Sy1 =5 Ry1=r|Si =54 =a,S,_1,A_1,...) = p(s,rs,a).

® The distribution depends only on the current state and action.
® |t is constant over time.

® We will allow for continuous states and actions later.

4/20

Policy function, value function, action value function

® Objective: Discounted stream of rewards, ¥~V R;.

® Expected future discounted reward at time ¢, given the state S; = s:
Value function,

Vils) =E

Y ¥ RIS = s] .

t'>t

® Expected future discounted reward at time ¢, given the state S; = s and action
A =a:
Action value function,

0,(a,s)=E [Z YRS, =5,Ar =a

t'>t

5/20

Bellman equation

e Consider a policy (als), giving the probability of choosing a in state s.
This gives us all transition probabilities, and we can write expected discounted
returns recursively

QOr(a,s) = (#20Qx)(a,s) Zps rls,a) <r+7 Zﬂ 'Is")Qx(d, S)>

® Suppose alternatively that future actions are chosen optimally.
We can again write expected discounted returns recursively

0.fa9) = (.0.)(0s) = Kot sl (r+7-mx .61).

6/20

Existence and uniequeness of solutions

® The operators %, and %, define contraction mappings on the space of action
value functions. (As long as y< 1.)

® By Banach'’s fixed point theorem, unique solutions exist.

® The difference between assuming a given policy 7, or considering optimal actions
argmax ,Q(a,s), is the dividing line between on policy and off policy methods in
reinforcement learning.

7/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Expected updates - dynamic programming

Suppose we know the transition probabilities p(s’,r|s,a).

Then we can in principle just solve for the action value functions and optimal
policies.

This is typically assumed in macro, 10 models.

Solutions: Dynamic programming.
Iteratively replace

® Or(a,s) by (%z0r)(a,s), or
° Q*(a>s) by (c%*QQ(CLS)

Decision problems with terminal states: Can solve in one sweep of backward
induction.

Otherwise: Value function iteration until convergence — replace repeatedly.

8/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Sample updates

In practically interesting settings, agents (human or Al) typically don't know the
transition probabilities p(s’,r|s,a).

This is where reinforcement learning comes in.
Learning from observation while acting in an environment.

Observations come in the form of tuples

(s,a,r,s').

Based on a sequence of such tuples, we want to learn Q; or Q..

9/20

Classification of one-step reinforcement
learning methods

1. Known vs. unknown transition probabilities.
2. Value function vs. action value function.

3. On policy vs. off policy.

e We will discuss Sarsa and Q-learning.

® Both: unknown transition probabilities and
action value functions.

e First: “tabular” methods, where we keep track
off all possible values (a,s).

® Then: “approximate” methods for richer
spaces of (a,s), e.g., deep neural nets.

Value
estimated

vr(8)

V()

(s, a)

q«(s,a)

Expected updates
(DP)
S

™
a
p\"
OO0 OO0 OO0

policy evaluation

s

ANA K

OO0 OO0 OO0

value iteration

¢ o o od

g-policy evaluation

¢ o o od

q-value iteration

Sample updates
(one-step TD)

A
7]
(oX
TD(0)

max
¢ e ed

Q-learning

10/20

Sarsa

® On policy learning of action value functions.

Recall Bellman equation

Os(a,s) = Y p(s' rls.a) <r+ y-2n<a’|s'>Qn(a',s’>) .

® Sarsa estimates expectations by sample averages.

After each observation (s,a,r,s’,d’), replace the estimated Qx(a,s) by
Or(a,s)+a- (r—|— Y- Qx(d,s") — Q,r(a,s)) .

® is the step size / speed of learning / rate of forgetting.

11/20

Sarsa as stochastic (semi-)gradient descent

® Think of Qz(a,s) as prediction for Y =r+7y-Qx(d,s').

® Quadratic prediction error:

(Y — Qx(a,s))*.

Gradient for minimization of prediction error for current observation w.r.t.

Oxr(a,s):

— (Y = QOrl(a,s)).

Sarsa is thus a variant of stochastic gradient descent.

Variant: Data are generated by actions where 7 is chosen as the optimal policy
for the current estimate of Q.

Reasonable method, but convergence guarantees are tricky.

12/20

Q-learning

Similar to Sarsa, but off policy.

Like Sarsa, estimate expectation over p(s’,r|s,a) by sample averages.

Rather than the observed next action a’ consider the optimal action
argmax , Q. (d',s").

After each observation (s,a,r,s’), replace the estimated Q.(a,s) by

Q*(a,s)—i—a- <r+ '}/mEllX Q*(alasl) —Q*(G,S)> :

13/20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Approximation

So far, we have implicitly assumed that there is a small, finite number of states s
and actions a, so that we can store Q(a,s) in tabular form.

In practically interesting cases, this is not feasible.

Instead assume parametric functional form for Q(a,s;0).

In particular: Deep neural nets!

Assume differentiability with gradient VyQ(a,s;0).

14 /20

Stochastic gradient descent
® Denote our prediction target for an observation (s,a,r,s’,a’) by
Y=r+7 0z(d,s;0).
® As before, for the on-policy case, we have the quadratic prediction error
(Y — Qx(a,s;0))*.

® Semi-gradient: Only take derivative for the Qz(a,s;0) part, but not for the
prediction target Y:

— (Y = Qx(a,5:0)) - VoQ(a,s:0).
® Stochastic gradient descent updating step: Replace 6 by

0+a-(Y—0x(a,s;0))-VeQOl(a,s;0).

15/20

Off policy variant

e As before, can replace d’ by the estimated optimal action.
® Change the prediction target to

Y =r+y-max Q.(d,s';0).
a/

® Updating step as before, replacing 6 by

0+a-(Y—0Q.(a,s;0))-VeQil(a,s;0).

16 /20

Markov decision problems

Expected updates - dynamic programming

Sample updates

Approximation

Eligibility traces

References

Multi-step updates

® All methods discussed thus far are one-step methods.

After observing (s,a,r,s’,d’), only Q(a,s) is targeted for an update.

But we could pass that new information further back in time, since

t+k

0(a,) =E | Y 7 "R+ Y QA 1, Sk A = 0,8 = 5| .
t'=t

One possibility: at time r+k+ 1, update 6 using the prediction target

t+k—1
v} = Z Y 'R+ Y Or (At Sa)-
t'=t

k-step Sarsa: At time t +k, replace 6 by
0+ 0 (¥}~ 0x(4,,5:6)) - Vo0r(4,,5::0).

17/20

TD(A) algorithm
® Multi-step updates can result in faster learning.

® We can also weight the prediction targets for different numbers of steps, e.g.
using weights AX:
-y 1
Y, = Z Y 'R+ Y On (A1 Sirn)

t'=t

W= (1-2) Y Ak-¥k
k=1

* But don't we have to wait forever before we can make an update based on ¥*?
® Note quite, since we can do the updating piece-wise!

® This idea leads to the so-called TD(A) algorithm.

18/20

Eligibility traces

® For TD(A), we proceed as for one-step Sarsa, using the prediction target

Y, =R +7 OQz(Ai1,5+41:0).

But we replace the gradient VoQr(A;,S;;0) by a weighted average of past
gradients, the so-called eligibility trace: Let Zg =0 and

Zi=YA-Zi_1+Ve0r(A;,S;;0).

Updating step: At time ¢ replace 6 by

0+a- (Y, —0x(A1,5:0)) - Z.

This exactly implements the updating by Yt7L in the long run.

This is one of the most popular and practically successful reinforcement learning
algorithms.

19/20

References

° Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.
° Francois-Lavet, V., Henderson, P, Islam, R., Bellemare, M. G., and Pineau, J.

(2018). An introduction to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219-354.

20/20

	Markov decision problems
	Expected updates - dynamic programming
	Sample updates
	Approximation
	Eligibility traces
	References

