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Outline

® Regression trees: Splitting the covariate space.

® Random forests: Many trees.
Using bootstrap aggregation to improve predictions.

® (Causal trees: Predicting heterogeneous causal effects.

Ground truth not directly observable, for cross-validation.
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Takeaways for this part of class

® Trees partition the covariate space and form predictions as local averages.

® |terative splitting of partitions allows us to be more flexible in regions of the
covariate space with more variation of outcomes.

® Bootstrap aggregation (bagging) is a way to get smoother predictions, and leads
to random forests when applied to trees.

® Things get more complicated when we want to predict heterogeneous causal
effects, rather than observable outcomes.

® This is because we do not directly observe a ground truth that can be used for
tuning.
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Regression trees

® Suppose we have i.i.d. observations (X;,Y;) and want to estimate
g(x) =E[Y|X =x].

® Suppose we furthermore have a partition of the regressor space into subsets
(Rl,...,RM).

® Then we can estimate g(-) by averages in each element of the partition:

Zcm (x €ERy)

Con = ZiYi'l(Xi 6Rm)
" E:il()g'éfl?m)

® This is a regression analog of a histogram.
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Recursive binary partitions
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Constructing the partition

How to choose the partition?

Start with the trivial partition with one element.

Greedy algorithm (CART): lteratively split an element of the partition,
such that the in-sample prediction improves as much as possible.
That is: Given (Ry,...,Ry),
® Foreach R,, m=1,...,M, and
® foreach X;, j=1,...,k,
® find the x;,, that minimizes the mean squared error,
if we split R, along variable X; at x; .
Then pick the (m, j) that minimizes the mean squared error,
and construct a new partition with M + 1 elements.
® [terate.
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Tuning and pruning

® Key tuning parameter: Total number of splits M.

® \We can optimize this via cross-validation.

CART can furthermore be improved using “pruning.”
® |dea:

® Fit a flexible tree (with large M) using CART.
® Then iteratively remove (collapse) nodes.
® To minimize the sum of squared errors,
plus a penalty for the number of elements in the partition.

This improves upon greedy search.
It yields smaller trees for the same mean squared error.

6/15



Regression trees

Random forests

Causal trees

References



From trees to forests

® Trees are intuitive and do OK, but they are not amazing for prediction.

® We can improve performance a lot using either bootstrap aggregation (bagging)
or boosting.

° Bagging:

® Repeatedly draw bootstrap samples (Xl-”,Yi”)?:1 from the observed sample.

® For each bootstrap sample, fit a regression tree g°(-).
® Average across bootstrap samples to get the predictor

B
Y ().
b=1

® This is a technique for smoothing predictions.
The resulting predictor is called a “random forest.”

8 = -

™|

® Possible modification:
Restrict candidate splits to a random subset of predictors in each tree-fitting step.
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An empirical example (courtesy of Jann Spiess)
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Regression tree
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Random forest
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Causal trees

® Suppose we observe i.i.d. draws of (¥;,D;,X;), and wish to estimate
t(x) =E[Y|D=1,X =x]—E[Y|D=0,X =x].

® Motivation: This is the conditional average treatment effect
under an unconfoundedness assumption on potential outcomes,

(r°y"H L D|X.
® This is relevant, in particular, for targeted treatment assignment.
® We might, for a given partition Z = (Ry,...,Ry), use the estimator

tx) =) (ch—c) - 1(x € Ry)

m
o Y. Y- 1(X; €Ry,Di =d)
mn Zil(XieRmaDi:d)
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Targets for splitting and cross-validation

® Recall that CART uses greedy splitting.
It aims to minimize in-sample mean squared error.

® For tuning, we proposed to use the out-of-sample mean squared error
in order to choose the tree depth.

® Analog for estimation of 7(-): Sum of squared errors (minus normalizing constant),

SSE() =Y, (1 —#(X;))*— 7).,
ics

where . is either the estimation sample, or a hold-out sample for cross-validation.
(The term 7? is added as a convenient normalization.)

® Problem: 7; is not observed.
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Targets continued

® Solution: We can rewrite SSE(.¥),

SSE(S) =Y (#(X,,Z)- (1(Xi, Z) —2%)).
i€’

® Suppose we split our sample into (.#!,.72), use .#’! for estimation, and .7 for
tuning. Let £;(X,Z) be the estimator based on sample .7/

® An estimator of SSE(.#?) (for tuning) is then given by

SSE(%) = Y, (81X ) - (41(Xi, %) = 202X, R)) ) -
s

® An analog to the in-sample sum of squared errors (for CART splitting) is given by

SSE(Y) =Y (~t1(X:,%)?).
ics
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