Foundations of machine learning Experiments for policy choice

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

Outline

- Alternative objectives for the design of experiments.
- Exploration sampling as a modification of Thompson sampling.
- The oracle optimal allocation for the policy choice problem.
- Exploration sampling converges to the oracle optimal allocation.
- Simulations and empirical application.

Takeaways for this part of class

- Adaptive designs improve expected welfare.
- Features of the optimal treatment assignment:
 - Shift toward better performing treatments over time.
 - But don't shift as much as for Bandit problems: We have no "exploitation" motive!
 - Asymptotically: Equalize power for comparisons of each suboptimal treatment to the optimal one.
- Fully optimal assignment is computationally challenging in large samples.
- We propose a simple exploration sampling algorithm.
 - Argue that it is rate-optimal for our problem, because it equalizes power across suboptimal treatments.
 - Show that it dominates alternatives in calibrated simulations.

Introduction

The goal of many experiments is to inform policy choices:

- $1. \ \mbox{Job}\ \mbox{search}\ \mbox{assistance}\ \mbox{for refugees:}$
 - Treatments: Information, incentives, counseling, ...
 - Goal: Find a policy that helps as many refugees as possible to find a job.
- 2. Clinical trials:
 - Treatments: Alternative drugs, surgery, ...
 - Goal: Find the treatment that maximizes the survival rate of patients.

3. Online **A/B testing**:

- Treatments: Website layout, design, search filtering, ...
- Goal: Find the design that maximizes purchases or clicks.
- 4. Testing product design:
 - Treatments: Various alternative designs of a product.
 - Goal: Find the best design in terms of user willingness to pay.

What is the objective of your experiment?

1. Getting precise treatment effect estimators, powerful tests:

$$\min \sum_{d} (\hat{\theta}^d - \theta^d)^2$$

 \Rightarrow Standard experimental design recommendations.

2. Maximizing the outcomes of experimental participants:

$$\max \sum_i \theta^{D_i}$$

 \Rightarrow Multi-armed bandit problems.

3. Picking a welfare maximizing policy after the experiment:

$\max \theta^{d^*},$

where d^* is chosen after the experiment. \Rightarrow This lecture.

Setup

Thompson sampling and exploration sampling

Calibrated simulations

Implementation in the field

References

Setup

- Waves t = 1, ..., T, sample sizes N_t .
- Treatment $D \in \{1, \dots, k\}$, outcomes $Y \in \{0, 1\}$.
- Potential outcomes Y^d .
- Repeated cross-sections:
 (Y⁰_{it},...,Y^k_{it}) are i.i.d. across both i and t.
- Average potential outcome:

$$\theta^d = E[Y_{it}^d].$$

- Key choice variable: Number of units n^d_t assigned to D = d in wave t.
- Outcomes:

Number of units s_t^d having a "success" (outcome Y = 1).

Treatment assignment, outcomes, state space

- Treatment assignment in wave t: $n_t = (n_t^1, \dots, n_t^k)$.
- Outcomes of wave t: $s_t = (s_t^1, \dots, s_t^k)$.
- Cumulative versions:

$$M_t = \sum_{t' \leq t} N_{t'}, \qquad m_t = \sum_{t' \leq t} n_t, \qquad r_t = \sum_{t' \leq t} s_t.$$

- Relevant information for the experimenter in period t + 1 is summarized by m_t and r_t .
- Total trials for each treatment, total successes.

Design objective and Bayesian prior

- Policy objective $\theta^{d_T^*}$.
 - where d_T^* is chosen after the experiment.
- Prior
 - $\theta^d \sim Beta(\alpha_0^d, \beta_0^d)$, independent across d.
 - Posterior after period *t*: $\theta^d | m_t, r_t \sim Beta(\alpha^d_t, \beta^d_t)$

$$egin{aligned} lpha_t^d &= lpha_0^d + r_t^d \ eta_t^d &= eta_0^d + m_t^d - r_t^d. \end{aligned}$$

• **Posterior expected social welfare** as a function of *d*:

$$SW_T(d) = E[\theta^d | m_T, r_T],$$

$$= \frac{\alpha_T^d}{\alpha_T^d + \beta_T^d},$$

$$d_T^* \in \operatorname*{argmax}_d SW_T(d)$$

).

Regret

- True optimal treatment: $d^{(1)} \in \operatorname{arg\,max}_{d'} \theta^{d'}$.
- **Policy regret** when choosing treatment *d*:

$$\Delta^d = \boldsymbol{\theta}^{d^{(1)}} - \boldsymbol{\theta}^d.$$

• Maximizing expected social welfare is equivalent to minimizing the expected policy regret at *T*,

$$E[\Delta^d | m_T, r_T] = \theta^{d^{(1)}} - SW_T(d)$$

• In-sample regret: Objective considered in the bandit literature,

$$\frac{1}{M}\sum_{i,t}\Delta^{D_{it}}.$$

Different from policy regret $\Delta^{d_T^*}!$

Setup

Thompson sampling and exploration sampling

Calibrated simulations

Implementation in the field

References

Reminder: Thompson sampling

• Thompson sampling

Assign each treatment with probability equal to the posterior probability that it is optimal.

$$p_t^d = P\left(d = \operatorname*{argmax}_{d'} \theta^{d'} | m_{t-1}, r_{t-1}\right).$$

• Easily implemented: Sample draws $\hat{\theta}_{it}$ from the posterior, assign

$$D_{it} = \operatorname*{argmax}_{d} \hat{\theta}_{it}^{d}$$

- Expected Thompson sampling
 - Straightforward modification for the batched setting.
 - Assign non-random shares p_t^d of each wave to treatment d.

Exploration sampling

- Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal for the multi-armed bandit problem.
- It is not for our policy choice problem!
- We propose the following modification.
- Exploration sampling: Assign shares q_t^d of each wave to treatment d, where

$$q_t^d = S_t \cdot p_t^d \cdot (1 - p_t^d),$$
$$S_t = \frac{1}{\sum_d p_t^d \cdot (1 - p_t^d)}.$$

- This modification
 - $1.\,$ yields rate-optimality, and
 - 2. improves performance in our simulations.

Illustration of the mapping from Thompson to exploration sampling

Setup

Thompson sampling and exploration sampling

Calibrated simulations

Implementation in the field

References

Calibrated simulations

- Simulate data calibrated to estimates of 3 published experiments.
- Set θ equal to observed average outcomes for each stratum and treatment.
- Total sample size same as original.

Ashraf, N., Berry, J., and Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field experiment in Zambia. *American Economic Review*, 100(5):2383–2413 Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014). Underinvestment in a profitable technology: The case of seasonal migration in Bangladesh. *Econometrica*, 82(5):1671–1748 Cohen, J., Dupas, P., and Schaner, S. (2015). Price subsidies, diagnostic tests, and targeting of malaria treatment: evidence from a randomized controlled trial. *American Economic Review*, 105(2):609–45

Calibrated parameter values

Treatment arms labeled 1 up to 7:

- Ashraf et al. (2010): Kw 300 800 price for water disinfectant.
- Bryan et al. (2014): Migration incentives cash, credit, information, and control.
- Cohen et al. (2015): Price of Ksh 40, 60, and 100 for malaria tablets, each with and without free malaria test, and control of Ksh 500.

Summary of simulation findings

- With two waves, relative to non-adaptive assignment:
 - Thompson reduces average policy regret by 15-58 %,
 - exploration sampling by 21-67 %.
- Similar pattern for the probability of choosing the optimal treatment.
- Gains increase with the number of waves, given total sample size.
 Up to 25% for evaluation campling with 10 waves for Ashraf et al.
 - Up to 85% for exploration sampling with 10 waves for Ashraf et al. (2010).
- Gains largest for Ashraf et al. (2010), followed by Cohen et al. (2015), and smallest for Bryan et al. (2014).
- For in-sample regret, Thompson is best, followed closely by exploration sampling.

Ashraf, Berry, and Shapiro (2010)

Statistic	2 waves	4 waves	10 waves	
Average policy regret				
exploration sampling	0.0017	0.0010	0.0008	
expected Thompson	0.0022	0.0014	0.0013	
non-adaptive	0.0051	0.0050	0.0051	
Share optimal				
exploration sampling	0.978	0.987	0.989	
expected Thompson	0.971	0.981	0.982	
non-adaptive	0.933	0.935	0.933	
Average in-sample regret				
exploration sampling	0.1126	0.0828	0.0701	
expected Thompson	0.1007	0.0617	0.0416	
non-adaptive	0.1776	0.1776	0.1776	
Units per wave	502	251	100	

Bryan, Chowdhury, and Mobarak (2014)

Statistic	2 waves	4 waves	10 waves	
Average policy regret				
exploration sampling	0.0045	0.0041	0.0039	
expected Thompson	0.0048	0.0044	0.0043	
non-adaptive	0.0055	0.0054	0.0054	
Share optimal				
exploration sampling	0.792	0.812	0.820	
expected Thompson	0.777	0.795	0.801	
non-adaptive	0.747	0.748	0.749	
Average in-sample regret				
exploration sampling	0.0655	0.0386	0.0254	
expected Thompson	0.0641	0.0359	0.0205	
non-adaptive	0.1201	0.1201	0.1201	
Units per wave	935	467	187	

Cohen, Dupas, and Schaner (2015)

Statistic	2 waves	4 waves	10 waves	
Average policy regret				
exploration sampling	0.0070	0.0063	0.0060	
expected Thompson	0.0074	0.0065	0.0061	
non-adaptive	0.0086	0.0087	0.0085	
Share optimal				
exploration sampling	0.567	0.586	0.592	
expected Thompson	0.560	0.582	0.589	
non-adaptive	0.526	0.524	0.529	
Average in-sample regret				
exploration sampling	0.0489	0.0374	0.0314	
expected Thompson	0.0467	0.0345	0.0278	
non-adaptive	0.0737	0.0737	0.0737	
Units per wave	1080	540	216	

Implementation in the field

- NGO Precision Agriculture for Development (PAD), and Government of Odisha, India.
- Enrolling rice farmers into customized advice service by mobile phone.
- Waves of 600 farmers called through automated service; total of 10K calls.
- Outcome: did the respondent answer the enrollment questions?

PAD Odissa Summary statistics Time series Tables Source data

4000

0.4

Outcomes and posterior parameters

Tr	reatment	Outcomes			Posterior		
Call time	SMS alert	m_T^d	r_T^d	r_T^d/m_T^d	mean	SD	p_T^d
10am	-	903	145	0.161	0.161	0.012	0.009
10am	1h ahead	3931	757	0.193	0.193	0.006	0.754
10am	24h ahead	2234	400	0.179	0.179	0.008	0.073
6:30pm	-	366	53	0.145	0.147	0.018	0.011
6:30pm	1h ahead	1081	182	0.168	0.169	0.011	0.027
6:30 pm	24h ahead	1485	267	0.180	0.180	0.010	0.126

Assignment shares over time

References

- Glynn, P. and Juneja, S. (2004). A large deviations perspective on ordinal optimization. In Proceedings of the 36th Winter simulation conference, pages 577–585. Winter Simulation Conference.
- Russo, D. (2016). Simple bayesian algorithms for best arm identification. In Conference on Learning Theory, pages 1417–1418.
- Kasy, M. and Sautmann, A. (2021). Adaptive treatment assignment in experiments for policy choice. Econometrica, 89(1):113–132.
 - Interactive dashboard for treatment assignment: https://maxkasy.shinyapps.io/exploration_sampling_dashboard/