Foundations of machine learning Probably approximately correct learning

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

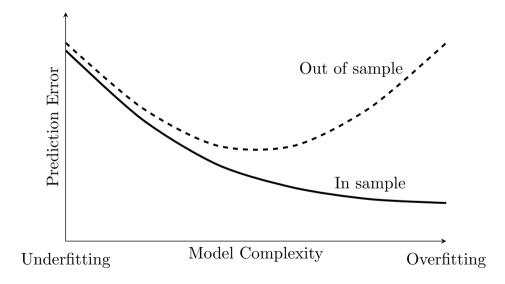
Outline

- Definitions:
 - Classification and prediction problems.
 - Empirical risk minimization.
 - PAC learnability.
- Proving the "Fundamental Theorem of statistical learning:"
 - ε -representative samples.
 - Uniform convergence.
 - No free lunch.
 - Shatterings.
 - VC dimension.

Takeaways for this part of class

- Classification and prediction is about out-of-sample prediction errors.
- These can be decomposed into an approximation error ("bias") and an estimation error ("variance").
- There is a trade-off between the two.
 Larger classes of predictors imply less approximation error (no "underfitting"),
 but more estimation error ("overfitting").
- The worst-case estimation error depends on the VC-dimension of the class of predictors considered.

Our goal: Understanding this figure



Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

References

Setup and notation

- Features (predictive covariates): X
- Labels (outcomes): $Y \in \{0,1\}$
- Training data (sample): $S = \{(X_i, Y_i)\}_{i=1}^n$
- Data generating process: (X_i, Y_i) are i.i.d. draws from a distribution \mathcal{D}
- Prediction rules (hypotheses): $h: X \rightarrow \{0,1\}$

Learning algorithms

• Risk (generalization error): Probability of misclassification

$$L(h, \mathcal{D}) = E_{(X,Y) \sim \mathcal{D}} [1(h(X) \neq Y)].$$

• Empirical risk: Sample analog of risk,

$$L(h,S) = \frac{1}{n} \sum_{i} 1(h(X) \neq Y).$$

- Learning algorithms map samples $S = \{(X_i, Y_i)\}_{i=1}^n$ into predictors h_S .
- Notation:
 h corresponds to a in the decision theory slides,
 D corresponds to θ.

Chihuahua or muffin?

Empirical risk minimization

Optimal predictor:

$$h_{\mathcal{D}}^* = \underset{h}{\operatorname{argmin}} L(h, \mathcal{D}) = 1(E_{(X,Y) \sim \mathcal{D}}[Y|X] \ge 1/2).$$

- Hypothesis class for $h: \mathcal{H}$.
- Empirical risk minimization:

$$h_{\mathbb{S}}^{ERM} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} L(h, \mathbb{S}).$$

 Special cases (for more general loss functions):
 Ordinary least squares, maximum likelihood, minimizing empirical risk over model parameters.

Practice problem

How does empirical risk minimization relate

- 1. to ordinary least squares, and
- 2. to maximum likelihood estimation?

(Agnostic) PAC learnability

Definition 3.3

A hypothesis class ${\mathcal H}$ is agnostic probably approximately correct (PAC) learnable if

- ullet there exists a learning algorithm $h_{\mathbb{S}}$
- such that for all $\varepsilon, \delta \in (0,1)$ there exists an $n < \infty$
- such that for all distributions D

$$L(h_{\mathbb{S}}, \mathbb{D}) \leq \inf_{h \in \mathcal{H}} L(h, \mathbb{D}) + \varepsilon$$

- with probability of at least $1-\delta$
- over the draws of training samples

$$S = \{(X_i, Y_i)\}_{i=1}^n \sim^{iid} \mathfrak{D}.$$

Discussion

- Definition is not specific to 0/1 prediction error loss.
- Worst case over all possible distributions D.
- Requires small regret:
 The oracle-best predictor in H doesn't do much better.
- Comparison to the best predictor in the **hypothesis class** \mathcal{H} rather than to the unconditional best predictor $h_{\mathcal{D}}^*$.
- \Rightarrow The smaller the hypothesis class \mathcal{H} the easier it is to fulfill this definition.
- Definition requires small (relative) loss with high probability, not just in expectation.

Practice problem

How does PAC learnability relate to the performance criteria we discussed in the decision theory slides?

ε -representative samples

Definition 4.1
 A training set S is called ε-representative if

$$\sup_{h\in\mathcal{H}}|L(h,\mathcal{S})-L(h,\mathcal{D})|\leq\varepsilon.$$

• Lemma 4.2 Suppose that \mathcal{S} is $\varepsilon/2$ -representative. Then the empirical risk minimization predictor $h_{\mathcal{S}}^{ERM}$ satisfies

$$L(h_{\mathbb{S}}^{ERM}, \mathcal{D}) \leq \inf_{h \in \mathcal{H}} L(h, \mathcal{D}) + \varepsilon.$$

• *Proof:* if S is $\varepsilon/2$ -representative, then for all $h \in \mathcal{H}$

$$L(h_{\mathbb{S}}^{ERM}, \mathbb{D}) \leq L(h_{\mathbb{S}}^{ERM}, \mathbb{S}) + \varepsilon/2 \leq L(h, \mathbb{S}) + \varepsilon/2 \leq L(h, \mathbb{D}) + \varepsilon.$$

Uniform convergence

- Definition 4.3
 - ${\mathcal H}$ has the uniform convergence property if
 - for all $\varepsilon, \delta \in (0,1)$ there exists an $n < \infty$
 - ullet such that for all distributions ${\mathfrak D}$
 - with probability of at least $1-\delta$ over draws of training samples $\mathcal{S}=\{(X_i,Y_i)\}_{i=1}^n\sim^{iid}\mathcal{D}$
 - it holds that S is ε -representative.
- Corollary 4.4
 - If $\ensuremath{\mathcal{H}}$ has the uniform convergence property, then
 - 1. the class is agnostically PAC learnable, and
 - 2. $h_{\rm S}^{ERM}$ is a successful agnostic PAC learner for ${\cal H}$.
- Proof: From the definitions and Lemma 4.2.

Probability theory intermission

Large deviations

Suppose that

$$E[\exp(\lambda \cdot (Y - E[Y]))] \le \exp(\psi(\lambda)).$$

• Let $\bar{Y}_n = \frac{1}{n} \sum_{1 \le i \le n} Y_i$ for i.i.d. Y_i . Then, by Markov's inequality and independence across t,

$$\begin{split} P(\bar{Y}_n - E[Y] > \varepsilon) &\leq \frac{E[\exp(\lambda \cdot (\bar{Y}_n - E[Y]))]}{\exp(\lambda \cdot \varepsilon)} \\ &= \frac{\prod_{1 \leq i \leq n} E[\exp((\lambda/n) \cdot (Y_i - E[Y]))]}{\exp(\lambda \cdot \varepsilon)} \\ &\leq \exp(n\psi(\lambda/n) - \lambda \cdot \varepsilon). \end{split}$$

Large deviations continued

ullet Define the Legendre-transformation of ψ as

$$\psi^*(\varepsilon) = \sup_{\lambda \geq 0} \left[\lambda \cdot \varepsilon - \psi(\lambda) \right].$$

• Taking the inf over λ in the previous slide implies

$$P(\bar{Y}_n - E[Y] > \varepsilon) \le \exp(-n \cdot \psi^*(\varepsilon)).$$

- For distributions bounded by [0,1]: $\psi(\lambda) = \lambda^2/8$ and $\psi^*(\varepsilon) = 2\varepsilon^2$.
- This implies Hoeffding's inequality:

$$P(\bar{Y}_n - E[Y] > \varepsilon) \le \exp(-2n\varepsilon^2).$$

Finite hypothesis classes

• Corollary 4.6 Let $\mathcal H$ be a finite hypothesis class, and assume that loss is in [0,1]. Then $\mathcal H$ enjoys the uniform convergence property, where we set

$$n = \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\varepsilon^2} \right\rceil$$

The class \mathcal{H} is therefore agnostically PAC learnable.

• *Sketch of proof:* Union bound over $h \in \mathcal{H}$, plus Hoeffding's inequality,

$$P(|L(h,S) - L(h,D)| > \varepsilon) \le 2\exp(-2n\varepsilon^2).$$

No free lunch

Theorem 5.1

- Consider any learning algorithm $h_{\mathbb{S}}$ for binary classification with 0/1 loss on some domain \mathfrak{X} .
- Let $n < |\mathfrak{X}|/2$ be the training set size.
- Then there exists a \mathcal{D} on $\mathcal{X} \times \{0,1\}$, such that Y = f(X) for some f with probability 1, and
- with probability of at least 1/7 over the distribution of S,

$$L(h_{\mathbb{S}}, \mathfrak{D}) \geq 1/8.$$

- Intuition of proof:
 - Fix some set $\mathcal{C} \subset \mathcal{X}$ with $|\mathcal{C}| = 2n$,
 - consider \mathcal{D} uniform on \mathcal{C} , and corresponding to arbitrary mappings Y = f(X).
 - Lower-bound worst case $L(h_{\mathcal{S}}, \mathcal{D})$ by the average of $L(h_{\mathcal{S}}, \mathcal{D})$ over all possible choices of f.
- Corollary 5.2 Let $\mathcal X$ be an infinite domain set and let $\mathcal H$ be the set of all functions from $\mathcal X$ to $\{0,1\}$. Then $\mathcal H$ is not PAC learnable.

Error decomposition

$$egin{aligned} L(h_{\mathbb{S}}, \mathbb{D}) &= \pmb{arepsilon}_{app} + \pmb{arepsilon}_{est} \ \pmb{arepsilon}_{app} &= \min_{h \in \mathcal{H}} L(h, \mathbb{D}) \ \pmb{arepsilon}_{est} &= L(h_{\mathbb{S}}, \mathbb{D}) - \min_{h \in \mathcal{H}} L(h, \mathbb{D}). \end{aligned}$$

- Approximation error: ε_{app} .
- Estimation error: ε_{est} .
- Bias-complexity tradeoff: Increasing $\mathcal H$ increases ε_{est} , but decreases ε_{app} .
- Learning theory provides bounds on $arepsilon_{est}$.

Practice problem

Write out the approximation error and the (expected) estimation error for the case where

- 1. loss is given by the squared prediction error, and
- 2. \mathcal{H} is given by the set of linear predictors.

Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

References

Shattering

From now on, restrict to $Y \in \{0,1\}$.

Definition 6.3

- A hypothesis class ${\mathcal H}$
- shatters a finite set $C \subset \mathfrak{X}$
- if the restriction of \mathcal{H} to C (denoted \mathcal{H}_C)
- is the set of all functions from C to $\{0,1\}$.
- In this case: $|\mathcal{H}_C| = 2^{|C|}$.

VC dimension

Definition 6.5

- The VC-dimension of a hypothesis class \mathcal{H} , $VCdim(\mathcal{H})$,
- is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .
- ullet If ${\mathcal H}$ can shatter sets of arbitrarily large size
- ullet we say that ${\mathcal H}$ has infinite VC-dimension.

Corollary of the no free lunch theorem:

- Let $\mathcal H$ be a class of infinite VC-dimension.
- Then $\mathcal H$ is not PAC learnable.

Examples

- Threshold functions: $h(X) = 1(X \le c)$. VCdim = 1
- Intervals: $h(X) = 1(X \in [a,b])$. VCdim = 2
- Finite classes: $h \in \mathcal{H} = \{h_1, \dots, h_n\}$. $VCdim \leq \log_2(n)$
- VCdim is not always # of parameters: $h_{\theta}(X) = \lceil .5sin(\theta X) \rceil$, $\theta \in \mathbb{R}$. $VCdim = \infty$.

The Fundamental Theorem of Statistical learning

Theorem 6.7

- Let ${\mathcal H}$ be a hypothesis class of functions
- from a domain \mathfrak{X} to $\{0,1\}$,
- and let the loss function be the 0-1 loss.

Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. \mathcal{H} has a finite VC-dimension.

Proof

- 1. \rightarrow 2.: Shown above (Corollary 4.4).
- 2. \rightarrow 3.: Immediate.
- 3. \rightarrow 4.: By the no free lunch theorem.
- 4. \rightarrow 1.: That's the tricky part.
 - Sauer-Shelah-Perles's Lemma.
 - Uniform convergence for classes of small effective size.

Growth function

ullet The growth function of ${\mathcal H}$ is defined as

$$\tau_{\mathcal{H}}(n) := \max_{C \subset \mathcal{X}: |C| = n} |\mathcal{H}_C|.$$

• Suppose that $d = VCdim(\mathcal{H}) \leq \infty$. Then for $n \leq d$, $\tau_{\mathcal{H}}(n) = 2^n$ by definition.

Sauer-Shelah-Perles's Lemma

Lemma 6.10 For
$$d = VCdim(\mathcal{H}) \leq \infty$$
,

$$au_{\mathcal{H}}(b) \leq \max_{C \subset \mathcal{X}: |C| = n} |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$$

$$\leq \sum_{i=0}^{d} \binom{n}{i} \leq \left(\frac{en}{d}\right)^{d}.$$

- First inequality is the interesting / difficult one.
- Proof by induction.

Uniform convergence for classes of small effective size

Theorem 6.11

- For all distributions $\mathfrak D$ and every $\boldsymbol \delta \in (0,1)$
- with probability of at least 1δ over draws of training samples $S = \{(X_i, Y_i)\}_{i=1}^n \sim^{iid} \mathcal{D}$,
- we have

$$\sup_{h \in \mathcal{H}} |L(h, \mathbb{S}) - L(h, \mathcal{D})| \leq \frac{4 + \sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta \sqrt{2n}}.$$

Remark

- We already saw that uniform convergence holds for finite classes.
- This shows that uniform convergence holds for classes with polynomial growth of

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|.$$

• These are exactly the classes with finite VC dimension, by the preceding lemma.

References

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press, chapters 2-6.