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Outline

• Definitions:
• Classification and prediction problems.

• Empirical risk minimization.

• PAC learnability.

• Proving the “Fundamental Theorem of statistical learning:”
• ε-representative samples.

• Uniform convergence.

• No free lunch.

• Shatterings.

• VC dimension.
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Takeaways for this part of class

• Classification and prediction is about out-of-sample prediction errors.

• These can be decomposed into an approximation error (“bias”)
and an estimation error (“variance”).

• There is a trade-off between the two.
Larger classes of predictors imply less approximation error (no “underfitting”),
but more estimation error (“overfitting”).

• The worst-case estimation error depends on the VC-dimension of the class of
predictors considered.
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Our goal: Understanding this figure
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Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning
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Setup and notation

• Features (predictive covariates): X

• Labels (outcomes): Y ∈ {0,1}

• Training data (sample): S= {(Xi,Yi)}n
i=1

• Data generating process: (Xi,Yi) are i.i.d. draws from a distribution D

• Prediction rules (hypotheses): h : X →{0,1}
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Learning algorithms

• Risk (generalization error): Probability of misclassification

L(h,D) = E(X ,Y )∼D [1(h(X) ̸= Y )] .

• Empirical risk: Sample analog of risk,

L(h,S) =
1
n ∑

i
1(h(X) ̸= Y ).

• Learning algorithms
map samples S= {(Xi,Yi)}n

i=1
into predictors hS.

• Notation:
h corresponds to a in the decision theory slides,
D corresponds to θ .
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Chihuahua or muffin?
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Empirical risk minimization

• Optimal predictor:

h∗D = argmin
h

L(h,D) = 1(E(X ,Y )∼D[Y |X ]≥ 1/2).

• Hypothesis class for h: H.

• Empirical risk minimization:

hERM
S = argmin

h∈H
L(h,S).

• Special cases (for more general loss functions):
Ordinary least squares, maximum likelihood,
minimizing empirical risk over model parameters.
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Practice problem

How does empirical risk minimization relate

1. to ordinary least squares, and

2. to maximum likelihood estimation?
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(Agnostic) PAC learnability

Definition 3.3
A hypothesis class H is agnostic probably approximately correct (PAC) learnable if

• there exists a learning algorithm hS

• such that for all ε,δ ∈ (0,1) there exists an n < ∞

• such that for all distributions D

L(hS,D)≤ inf
h∈H

L(h,D)+ ε

• with probability of at least 1−δ

• over the draws of training samples

S= {(Xi,Yi)}n
i=1 ∼iid D.
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Discussion

• Definition is not specific to 0/1 prediction error loss.

• Worst case over all possible distributions D.

• Requires small regret:
The oracle-best predictor in H doesn’t do much better.

• Comparison to the best predictor in the hypothesis class H

rather than to the unconditional best predictor h∗D.

• ⇒ The smaller the hypothesis class H
the easier it is to fulfill this definition.

• Definition requires small (relative) loss with high probability,
not just in expectation.
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Practice problem

How does PAC learnability relate to the performance criteria we discussed in the
decision theory slides?
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ε-representative samples

• Definition 4.1
A training set S is called ε-representative if

sup
h∈H

|L(h,S)−L(h,D)| ≤ ε.

• Lemma 4.2
Suppose that S is ε/2-representative.
Then the empirical risk minimization predictor hERM

S satisfies

L(hERM
S ,D)≤ inf

h∈H
L(h,D)+ ε.

• Proof: if S is ε/2-representative,
then for all h ∈H

L(hERM
S ,D)≤ L(hERM

S ,S)+ ε/2 ≤ L(h,S)+ ε/2 ≤ L(h,D)+ ε.
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Uniform convergence

• Definition 4.3
H has the uniform convergence property if

• for all ε,δ ∈ (0,1) there exists an n < ∞

• such that for all distributions D

• with probability of at least 1−δ over draws of training samples
S= {(Xi,Yi)}n

i=1 ∼iid D

• it holds that S is ε-representative.

• Corollary 4.4
If H has the uniform convergence property, then

1. the class is agnostically PAC learnable, and

2. hERM
S is a successful agnostic PAC learner for H.

• Proof: From the definitions and Lemma 4.2.
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Probability theory intermission
Large deviations

• Suppose that
E[exp(λ · (Y −E[Y ]))]≤ exp(ψ(λ )).

• Let Ȳn =
1
n ∑1≤i≤nYi for i.i.d. Yi.

Then, by Markov’s inequality and independence across t,

P(Ȳn −E[Y ]> ε)≤ E[exp(λ · (Ȳn −E[Y ]))]
exp(λ · ε)

=
∏1≤i≤n E[exp((λ/n) · (Yi −E[Y ]))]

exp(λ · ε)
≤ exp(nψ(λ/n)−λ · ε).
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Large deviations continued

• Define the Legendre-transformation of ψ as

ψ
∗(ε) = sup

λ≥0
[λ · ε −ψ(λ )] .

• Taking the inf over λ in the previous slide implies

P(Ȳn −E[Y ]> ε)≤ exp(−n ·ψ∗(ε)).

• For distributions bounded by [0,1]:
ψ(λ ) = λ 2/8 and ψ∗(ε) = 2ε2.

• This implies Hoeffding’s inequality:

P(Ȳn −E[Y ]> ε)≤ exp(−2nε
2).
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Finite hypothesis classes

• Corollary 4.6
Let H be a finite hypothesis class, and assume that loss is in [0,1].
Then H enjoys the uniform convergence property, where we set

n =

⌈
log(2|H|/δ )

2ε2

⌉
The class H is therefore agnostically PAC learnable.

• Sketch of proof: Union bound over h ∈H,
plus Hoeffding’s inequality,

P(|L(h,S)−L(h,D)|> ε)≤ 2exp(−2nε
2).
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No free lunch

Theorem 5.1

• Consider any learning algorithm hS for binary classification
with 0/1 loss on some domain X.

• Let n < |X|/2 be the training set size.

• Then there exists a D on X×{0,1},
such that Y = f (X) for some f with probability 1, and

• with probability of at least 1/7 over the distribution of S,

L(hS,D)≥ 1/8.
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• Intuition of proof:
• Fix some set C⊂ X with |C|= 2n,

• consider D uniform on C,
and corresponding to arbitrary mappings Y = f (X).

• Lower-bound worst case L(hS,D)
by the average of L(hS,D) over all possible choices of f .

• Corollary 5.2
Let X be an infinite domain set
and let H be the set of all functions from X to {0,1}.
Then H is not PAC learnable.
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Error decomposition

L(hS,D) = εapp + εest

εapp = min
h∈H

L(h,D)

εest = L(hS,D)−min
h∈H

L(h,D).

• Approximation error: εapp.

• Estimation error: εest .

• Bias-complexity tradeoff:
Increasing H increases εest , but decreases εapp.

• Learning theory provides bounds on εest .
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Practice problem

Write out the approximation error and the (expected) estimation error
for the case where

1. loss is given by the squared prediction error, and

2. H is given by the set of linear predictors.
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Shattering

From now on, restrict to Y ∈ {0,1}.

Definition 6.3

• A hypothesis class H

• shatters a finite set C ⊂ X

• if the restriction of H to C (denoted HC)

• is the set of all functions from C to {0,1}.

• In this case: |HC|= 2|C|.
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VC dimension

Definition 6.5

• The VC-dimension of a hypothesis class H, VCdim(H),

• is the maximal size of a set C ⊂ X that can be shattered by H.

• If H can shatter sets of arbitrarily large size

• we say that H has infinite VC-dimension.

Corollary of the no free lunch theorem:

• Let H be a class of infinite VC-dimension.

• Then H is not PAC learnable.

22 / 29



Examples

• Threshold functions: h(X) = 1(X ≤ c).
VCdim = 1

• Intervals: h(X) = 1(X ∈ [a,b]).
VCdim = 2

• Finite classes: h ∈H = {h1, . . . ,hn}.
VCdim ≤ log2(n)

• VCdim is not always # of parameters: hθ (X) = ⌈.5sin(θX)⌉, θ ∈ R.
VCdim = ∞.
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The Fundamental Theorem of Statistical learning

Theorem 6.7

• Let H be a hypothesis class of functions

• from a domain X to {0,1},

• and let the loss function be the 0−1 loss.

Then, the following are equivalent:

1. H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.

3. H is agnostic PAC learnable.

4. H has a finite VC-dimension.
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Proof

1. → 2.: Shown above (Corollary 4.4).

2. → 3.: Immediate.

3. → 4.: By the no free lunch theorem.

4. → 1.: That’s the tricky part.
• Sauer-Shelah-Perles’s Lemma.

• Uniform convergence for classes of small effective size.
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Growth function

• The growth function of H is defined as

τH(n) := max
C⊂X:|C|=n

|HC|.

• Suppose that d =VCdim(H)≤ ∞.
Then for n ≤ d, τH(n) = 2n by definition.
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Sauer-Shelah-Perles’s Lemma

Lemma 6.10
For d =VCdim(H)≤ ∞,

τH(b)≤ max
C⊂X:|C|=n

|{B ⊆C : H shatters B}|

≤
d

∑
i=0

(
n
i

)
≤
(en

d

)d
.

• First inequality is the interesting / difficult one.

• Proof by induction.
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Uniform convergence for classes of small effective size
Theorem 6.11

• For all distributions D and every δ ∈ (0,1)

• with probability of at least 1−δ over draws of training samples
S= {(Xi,Yi)}n

i=1 ∼iid D,

• we have

sup
h∈H

|L(h,S)−L(h,D)| ≤
4+

√
log(τH(2n))

δ
√

2n
.

Remark
• We already saw that uniform convergence holds for finite classes.

• This shows that uniform convergence holds for classes
with polynomial growth of

τH(m) = max
C⊂X:|C|=m

|HC|.

• These are exactly the classes with finite VC dimension, by the preceding lemma.
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