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Outline

e Definitions:
® (lassification and prediction problems.

® Empirical risk minimization.

® PAC learnability.

® Proving the “Fundamental Theorem of statistical learning:”
® g-representative samples.

® Uniform convergence.
® No free lunch.
® Shatterings.

® VC dimension.
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Takeaways for this part of class

e (lassification and prediction is about out-of-sample prediction errors.

® These can be decomposed into an approximation error ( “bias”)
and an estimation error (“variance”).

® There is a trade-off between the two.
Larger classes of predictors imply less approximation error (no
but more estimation error (“overfitting”).

‘underfitting”),

® The worst-case estimation error depends on the VC-dimension of the class of
predictors considered.
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Our goal: Understanding this figure
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Setup and basic definitions

VC dimension and the Fundamental Theorem of statistical learning

References



Setup and notation

Features (predictive covariates): X

Labels (outcomes): Y € {0,1}

Training data (sample): 8 = {(X;,Y;)}",

® Data generating process: (X;,Y;) are i.i.d. draws from a distribution D

Prediction rules (hypotheses): h: X — {0,1}

4/29



Learning algorithms
® Risk (generalization error): Probability of misclassification
L(h,D) = E(x y)~p [1(A(X) #Y)].

® Empirical risk: Sample analog of risk,
1
L(h,8) = ZZl(h(x) £Y).

® learning algorithms
map samples § = {(X;,¥;)}'",
into predictors hg.

® Notation:
h corresponds to a in the decision theory slides,
D corresponds to 6.
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Chihuahua or muffin?

B 2@
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Empirical risk minimization

e Optimal predictor:

hy = argmin L(h, D) = 1(E(x y).p[Y|X] > 1/2).
h

® Hypothesis class for h: H.
® Empirical risk minimization:

hERM — argmin L(h, 8).
heH

® Special cases (for more general loss functions):
Ordinary least squares, maximum likelihood,
minimizing empirical risk over model parameters.
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Practice problem

How does empirical risk minimization relate

1. to ordinary least squares, and

2. to maximum likelihood estimation?
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(Agnostic) PAC learnability

Definition 3.3
A hypothesis class H is agnostic probably approximately correct (PAC) learnable if

® there exists a learning algorithm hg

such that for all €,6 € (0,1) there exists an n < oo

such that for all distributions D

L(hg,D) < inf L(h,D)+¢
heH

with probability of at least 1 — &
® over the draws of training samples

§ = {(X, Y)Yy ~ D.
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Discussion

¢ Definition is not specific to 0/1 prediction error loss.
® Worst case over all possible distributions D.

® Requires small regret:
The oracle-best predictor in H{ doesn’t do much better.

e Comparison to the best predictor in the hypothesis class H
rather than to the unconditional best predictor Az,.

® = The smaller the hypothesis class HH
the easier it is to fulfill this definition.

e Definition requires small (relative) loss with high probability,
not just in expectation.
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Practice problem

How does PAC learnability relate to the performance criteria we discussed in the
decision theory slides?
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e-representative samples

e Definition 4.1
A training set S is called &-representative if

sup |[L(h,8) —L(h,D)| < e.
hed

® [emma 4.2
Suppose that 8 is £/2-representative.

Then the empirical risk minimization predictor thM

satisfies

L(hERM D) < higgf{L(h, D) +e.

® Proof: if § is €/2-representative,
then for all he H

L(hERM D) < L(hE™™ 8)+-¢/2 < L(h,8) +¢€/2 < L(h,D) +¢.
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Uniform convergence

® Definition 4.3
H has the uniform convergence property if

e forall €,0 € (0,1) there exists an n < oo
® such that for all distributions D

® with probability of at least 1 — 0 over draws of training samples
8={(X, ;) ~D

® it holds that 8 is e-representative.

e Corollary 4.4
If H has the uniform convergence property, then

1. the class is agnostically PAC learnable, and

2. thM is a successful agnostic PAC learner for K.

® Proof: From the definitions and Lemma 4.2.
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Probability theory intermission

Large deviations

® Suppose that
Elexp(A - (Y —E[Y]))] <exp(w(4)).

® |et Yn = %ZlgiSnYi for i.i.d. Yl
Then, by Markov's inequality and independence across f,

> Elexp(A - (¥, — E[Y]))]
P(Y,—E[Y]>¢€) < exp(h &)
_ i<i<aElexp((A/n) - (Yi — E[Y]))]
exp(A-€)
<exp(ny(A/n)—A-¢€).
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Large deviations continued

® Define the Legendre-transformation of y as

v (e) =sup[A-e—y(d)].
2>0

e Taking the inf over A in the previous slide implies

P(Y,—E[Y] >¢) <exp(—n-y*(g)).

® For distributions bounded by [0, 1]:
V(1) =A%/8 and y*(g) = 2¢%.

® This implies Hoeffding's inequality:

P(Y,— E[Y] > €) < exp(—2ne?).
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Finite hypothesis classes

® Corollary 4.6
Let H be a finite hypothesis class, and assume that loss is in [0, 1].
Then H enjoys the uniform convergence property, where we set

1= [loe220/2]

2€?
The class H is therefore agnostically PAC learnable.

® Sketch of proof: Union bound over h € H,
plus Hoeffding's inequality,

P(|L(h,8) — L(h,D)| > €) < 2exp(—2ne?).
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No free lunch

Theorem 5.1

® Consider any learning algorithm hg for binary classification
with 0/1 loss on some domain X.

¢ Let n < |X|/2 be the training set size.

® Then there exists a D on X x {0,1},
such that Y = f(X) for some f with probability 1, and

® with probability of at least 1/7 over the distribution of §,

L(hs, D) > 1/8.
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® |ntuition of proof:
® Fix some set C C X with |C| = 2n,

® consider D uniform on C,
and corresponding to arbitrary mappings ¥ = f(X).

® Lower-bound worst case L(hg,D)
by the average of L(hg,D) over all possible choices of f.

e Corollary 5.2
Let X be an infinite domain set
and let 3 be the set of all functions from X to {0, 1}.
Then H is not PAC learnable.
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Error decomposition

L(h87 D) = gapp + Eogt
Eapp = zl’éigr{lL(h,ﬂ)

o = L(hs,D) —minL(h,D).
Eest (S)g}( )

® Approximation error: &,).

Estimation error: &,.

Bias-complexity tradeoff:
Increasing H increases &, but decreases &,,.

Learning theory provides bounds on &,.
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Practice problem

Write out the approximation error and the (expected) estimation error
for the case where

1. loss is given by the squared prediction error, and

2. H is given by the set of linear predictors.
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VC dimension and the Fundamental Theorem of statistical learning



Shattering

From now on, restrict to Y € {0,1}.

Definition 6.3
® A hypothesis class H

® shatters a finite set C C X

if the restriction of H to C (denoted H¢)

is the set of all functions from C to {0, 1}.

In this case: |Hc| =2/,
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VC dimension

Definition 6.5
® The VC-dimension of a hypothesis class H, VCdim(H),

® is the maximal size of a set C C X that can be shattered by J{.

® |f H can shatter sets of arbitrarily large size

® we say that JH has infinite VC-dimension.

Corollary of the no free lunch theorem:

® | et H be a class of infinite VC-dimension.

® Then H is not PAC learnable.
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Examples

¢ Threshold functions: A(X)=1(X <c).
VCdim =1

e Intervals: h(X)=1(X € [a,b]).
VCdim =2

e Finite classes: h € H = {hy,...,h,}.
VCdim <log,(n)

® VCdim is not always # of parameters: hg(X) = [.5sin(0X)], 6 € R.
VCdim = oo.
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The Fundamental Theorem of Statistical learning

Theorem 6.7

® |et H be a hypothesis class of functions
e from a domain X to {0,1},

® and let the loss function be the 0 —1 loss.

Then, the following are equivalent:

1. X has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC learner for K.
3. H is agnostic PAC learnable.

4. H has a finite VC-dimension.
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Proof

1. — 2.: Shown above (Corollary 4.4).
2. — 3.: Immediate.
3. — 4.: By the no free lunch theorem.

4. — 1.: That's the tricky part.
® Sauer-Shelah-Perles’s Lemma.

® Uniform convergence for classes of small effective size.
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Growth function

® The growth function of H is defined as

T5c(n) ;== max |Hcl.

CCX:|Cl=n

® Suppose that d = VCdim(H) < eo.
Then for n <d, t3¢(n) =2" by definition.
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Sauer-Shelah-Perles’'s Lemma

Lemma 6.10
For d = VCdim(H) < oo,

T5¢(b) < max |[{B CC: XK shatters B}|
CCX:|C|=n

d d
<y (”) < (%)
i=0 \! d
e First inequality is the interesting / difficult one.

® Proof by induction.
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Uniform convergence for classes of small effective size
Theorem 6.11
® For all distributions D and every 6 € (0,1)

e with probability of at least 1 — & over draws of training samples
8 ={(X, Y}, ~™ D,

® we have
4 1 2
sup |L(h,8) — L(h, D)| <+ V10e(®c(2n))
heH 5\/2?
Remark

® We already saw that uniform convergence holds for finite classes.
® This shows that uniform convergence holds for classes
with polynomial growth of

T5c(m) = max |Hcl.
CCX:|Cl=m

® These are exactly the classes with finite VC dimension, by the preceding lemma.
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