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Outline

® Setup of online convex optimization:
® |teratively choose x;.

® Observe loss f;(x;) and gradient Vf;(x;).

® Baseline algorithm:
Online gradient descent (OGD).

e Adversarial regret guarantee for OGD.

® Connection to related settings:
® Adversarial online learning.

® Stochastic gradient descent.

® Multiarmed bandits.
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Takeaways for this part of class

® Online convex optimization provides a natural framework
to connect learning theory and optimization theory.

® Adversarial regret guarantee:
Adversarial regret grows at a rate of /7.

® QOther settings can be reduced to online convex optimization:

® Stochastic gradient descent:
Adversarial bounds imply stochastic bounds.
Return average of x; at the end.

® Bandit settings:
Form unbiased estimators of loss and gradients
using inverse probability weighting.

2/12



Online gradient descent

Connection to other learning problems

References



Setup
® Sequential choices x; € £, where % is convex.

e Convex loss functions f;(-).

® Observable, after choice of x;:
® Cost fi(x).

® Gradient Vf;(x).

® Regret:

T T
Rr = Zlfz(xt) - ) filx"),
t= t=1

where

x* = argmin i fi(x).

XX =1
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Online gradient descent

® Foreacht=1to T:
1. Play x;.

2. Observe V, = Vf(x;).
3. Update with a gradient step:
Ver1 =% — N~ Vi

4. Project into £
Xe+1 =g yesr.

® The stepsizes 1), are tuning parameters, to be specified.

4/12



Adversarial regret bound

® Consider online gradient descent with step-sizes

D
nt_G\/E7

where
lx=y|<D Vuxye, IVFX)|| <G Vxex.

® Then: 3
Rr < EGD\/T.
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Proof

® By convexity of f;:

Jila) = filx") < Vi (x —x7).
® By orthogonal projection:
[ =27 < e =271
® By definition of gradient update:
yier =217 = oo =P+ 07 [ Vell* =21V, - (3 —x7).
® Rearrange. By upper bound on V;:

B i L &

th * (x, _x*) n
t

+n,G>.
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Proof continued

Collect bounds and sum across t:

2Rt S 2ZVZ . (X[ —x*)

t
S k)12
SZ[H% X7 — [l — | +an2}
t
1 2
— | +G 'Znt
t

N
<Yl x| (1—
t Nt M1
1
<D*—+G*
Tnr ;nt

<3DGVT

(1/10 =0, |lxr41 — x| 2 0)

(telescoping series)

T
(definition of 7;; Z 1/Vt <2VT).
=1
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Connection to other learning problems



Online learning

® Recall the online learning problem:
® Expert predictions )A/hJ.

® Loss L(Y;,Y,).

® Map into online convex optimization:
® Weight vector x; = (x5,) in the simplex JZ".
® Prediction:

K‘::E:xhg')%J-
h

® Gradient:
Vi = (Yht), - 95L(Y:,Y,).
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Stochastic gradient descent

® Recall the stochastic optimization setting:
® Qur goal is to minimize f(x) w.r.t. x.

® \We observe unbiased gradient estimates V;:
E[Vl‘x,] = Vf(xl).
Think: V, = Vm(x,Z).

® Stochastic gradient descent:
1. Apply online gradient descent.

2. Return xXr = %Ztrzlx,.
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Regret bound for stochastic gradient descent
Assume E[||V,||?] < G*>. Then

Ef(er)] - f(x) < 292

Sketch of proof:

=
=
=
2
\
=
R*
IN
~l—
071~
e
=
=

= f(x)]
t=1
T
< %;E Vi (2 —x4)]
s

2T

(convexity)

(E[Vilx] =V f(x))

(Theorem for OGD)
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Multi-armed bandits

Coming up next in class.

Only observe loss L, for actions actually chosen.

For randomized algorithms, we can form unbiased estimators of the gradient of

reward: | J
vV, = <Lz . (D’_)>
Xd t d

This allows us to reduce the adversarial bandit problem
to an online convex optimization problem.
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