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Outline

• Setup of online convex optimization:
• Iteratively choose xt .

• Observe loss ft(xt) and gradient ∇ ft(xt).

• Baseline algorithm:
Online gradient descent (OGD).

• Adversarial regret guarantee for OGD.

• Connection to related settings:
• Adversarial online learning.

• Stochastic gradient descent.

• Multiarmed bandits.
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Takeaways for this part of class

• Online convex optimization provides a natural framework
to connect learning theory and optimization theory.

• Adversarial regret guarantee:
Adversarial regret grows at a rate of

√
T .

• Other settings can be reduced to online convex optimization:
• Stochastic gradient descent:

Adversarial bounds imply stochastic bounds.
Return average of xt at the end.

• Bandit settings:
Form unbiased estimators of loss and gradients
using inverse probability weighting.
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Online gradient descent

Connection to other learning problems

References



Setup

• Sequential choices xt ∈ K , where K is convex.

• Convex loss functions ft(·).

• Observable, after choice of xt :
• Cost ft(xt).

• Gradient ∇ ft(xt).

• Regret:

RT =
T

∑
t=1

ft(xt)−
T

∑
t=1

ft(x∗),

where

x∗ = argmin
x∈K

T

∑
t=1

ft(x).
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Online gradient descent

• For each t = 1 to T :
1. Play xt .

2. Observe ∇t = ∇ ft(xt).

3. Update with a gradient step:

yt+1 = xt −ηt ·∇t .

4. Project into K :
xt+1 = ΠK yt+1.

• The stepsizes ηt are tuning parameters, to be specified.
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Adversarial regret bound

Theorem
• Consider online gradient descent with step-sizes

ηt =
D

G
√

t
,

where

∥x− y∥ ≤ D ∀ x,y ∈ K , ∥∇ f (x)∥ ≤ G ∀ x ∈ K .

• Then:

RT ≤ 3
2

GD
√

T .
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Proof

• By convexity of ft :
ft(xt)− ft(x∗)≤ ∇t · (xt − x∗).

• By orthogonal projection:

∥xt+1 − x∗∥ ≤ ∥yt+1 − x∗∥.

• By definition of gradient update:

∥yt+1 − x∗∥2 = ∥xt − x∗∥2 +η
2
t ∥∇t∥2 −2ηt∇t · (xt − x∗).

• Rearrange. By upper bound on ∇t :

2∇t · (xt − x∗)≤ ∥xt − x∗∥2 −∥xt+1 − x∗∥2

ηt
+ηtG2.
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Proof continued

Collect bounds and sum across t:

2Rt ≤ 2∑
t

∇t · (xt − x∗)

≤ ∑
t

[
∥xt − x∗∥2 −∥xt+1 − x∗∥2

ηt
+ηtG2

]
≤ ∑

t
∥xt − x∗∥2

(
1
ηt

− 1
ηt−1

)
+G2 ·∑

t
ηt (1/η0 = 0,∥xT+1 − x∗∥2 ≥ 0)

≤ D2 1
ηT

+G2 ·∑
t

ηt (telescoping series)

≤ 3DG
√

T (definition of ηt ;
T

∑
t=1

1/
√

t ≤ 2
√

T ).

□
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Online learning

• Recall the online learning problem:
• Expert predictions Ŷh,t .

• Loss L(Ŷt ,Yt).

• Map into online convex optimization:
• Weight vector xt = (xh,t) in the simplex K .

• Prediction:
Ŷt = ∑

h
xh,t · Ŷh,t .

• Gradient:
∇t =

(
Ŷh,t

)
h ·∂Ŷ L(Ŷt ,Yt).
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Stochastic gradient descent

• Recall the stochastic optimization setting:
• Our goal is to minimize f (x) w.r.t. x.

• We observe unbiased gradient estimates ∇t :

E[∇t |xt ] = ∇ f (xt).

Think: ∇t = ∇m(x,Zt).

• Stochastic gradient descent:

1. Apply online gradient descent.

2. Return x̄T = 1
T ∑

T
t=1 xt .
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Regret bound for stochastic gradient descent

Assume E[∥∇t∥2]≤ G2. Then

E[ f (x̄T )]− f (x∗)≤ 3GD
2
√

T
.

Sketch of proof:

E[ f (x̄T )]− f (x∗)≤ 1
T

T

∑
t=1

E [ f (xt)− f (x∗)] (convexity)

≤ 1
T

T

∑
t=1

E [∇t · (xt − x∗)] (E[∇t |xt ] = ∇ f (xt))

≤ 3GD
2
√

T
. (Theorem for OGD)

□
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Multi-armed bandits

• Coming up next in class.

• Only observe loss Lt for actions actually chosen.

• For randomized algorithms, we can form unbiased estimators of the gradient of
reward:

∇t =

(
Lt ·

1(Dt = d)
xd,t

)
d

• This allows us to reduce the adversarial bandit problem
to an online convex optimization problem.
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