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Outline

® Setup: the Normal means model
X ~N(0,1,)

and the canonical estimation problem with loss || — 2.

The James-Stein (JS) shrinkage estimator.

Three ways to arrive at the JS estimator (almost):
1. Reverse regression of 6; on X;.

2. Empirical Bayes: random effects model for 6;.

3. Shrinkage factor minimizing Stein’s Unbiased Risk Estimate.

Proof that JS uniformly dominates X as estimator of 6.

Bonus slides: The Normal means model as asymptotic approximation.

1/36



Takeaways for this part of class

Shrinkage estimators trade off variance and bias.

In multi-dimensional problems, we can estimate the optimal degree of shrinkage.

Three intuitions that lead to the JS-estimator:
1. Predict 6; given X; = reverse regression.

2. Estimate distribution of the 6; = empirical Bayes.

3. Find shrinkage factor that minimizes estimated risk.

Some calculus allows us to derive the risk of JS-shrinkage
= better than MLE, no matter what the true 6 is.
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The Normal means model
Setup
e 9 cRF

® e~ N(0,I)

° X:9+8NN(9,I]€)

Estimator: 6 = 6(X)

® | oss: squared error

Risk: mean squared error

R(0,8) = Eq [L(@, e)} ~ Y E [(@- - e,ﬂ .

i
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Two estimators

® Canonical estimator: maximum likelihood,

® Risk function

® James-Stein shrinkage estimator
8" = (1—(k_2)/k> X
X2
® (Celebrated result: uniform risk dominance; for all 6

R0, 0) <R 6) =k

4/36



The Normal means model

Regression perspective

Parametric empirical Bayes

Stein’s Unbiased Risk Estimate

References



First motivation of JS: Regression perspective

We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

Consider estimators of the form

or

How to choose ¢ or (a,b)?

® Two particular possibilities:
1. Maximum likelihood: ¢ =1
2. James-Stein: ¢ = (1 - M)
XZ
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Practice problem (Infeasible estimator)

® Suppose you knew Xi,...,X; as well as 6y,..., 6,

® but are constrained to use an estimator of the form 5, =c-X;.

1. Find the value of ¢ that minimizes loss.

2. For estimators of the form 5, =a-+b-X; find the values of a and b that minimize
loss.
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Solution

First problem:
¢* = argmin ) (c-X;— 6;)°
¢ i

Least squares problem!

First order condition:
0= (c*.Xi—G,-)-Xi.

Solution
. LXib;

LiX?
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Solution continued

® Second problem:

(a*,b") = argmin Z(a+b-X,- —6,)?
a,b i

® | east squares problem again!

® First order conditions:

OZZ(Q*—FZ)*'X,'—GL‘)

1

O:Z(a*+b*~X,-—9,-)‘Xl~.

i

® Solution o _
X, —X)- (6 — o
Yi(Xi —X)? Sx
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Regression and reverse regression

Recall X; = 6, + €;, E[g;]6;] =0, Var(g;) = 1.

® Regression of X on 6: Slope

Sxo Seo
T:H‘%%l'
) s
0 0

For optimal shrinkage, we want to predict 6 given X, not the other way around!
® Reverse regression of 8 on X: Slope

2 2
Sxe Sg + Sco S
sy sh+2sco+s2 sh+1

Interpretation: “signal to (signal plus noise) ratio” < 1.
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Expectations

Practice problem

1. Calculate the expectations of

and

2. Calculate the expected numerator and denominator of ¢* and b*.
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Solution

92
=
02+1
® b* =sxp/s%, and E[sxe] :sé. Thus
2
s
b* ~ 5 o
sp+1
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Feasible analog estimators

Practice problem

Propose feasible estimators of ¢* and b*.
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A solution

® Recall:
[ ] C*:@
X2
® 9e~0, e2~1.

® Since X; = 6, +¢;,

® Thus:

X2—0e—¢e X>—1 1
XX x  Xx

¢ =
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Solution continued

® Similarly:
* _ 5X6
° b=
°X

® 59~ 0, sgml.

® Since X; = 6, +¢;,
2 2 2.2
Sxe = Sx — Sxe = Sy —Sge —Sg ~ Sy — 1

® Thus:
§2 —spe — 52 52 —1 1 ~
pr— X 0¢ e %X —1—_— —p
- $2 ~ 2 2
X X X
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James-Stein shrinkage
® We have almost derived the James-Stein shrinkage estimator.

® Only difference: degree of freedom correction

e Optimal corrections:

sy =2k
X2
and

bJS:1_
Sk

* Note: if 8§ =0, then ¥, X? ~ X/?
® Then, by properties of inverse x? distributions
E [1] _ b
X k=2
so that E [CJS] =0.

)

(k—3)/k
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Positive part JS-shrinkage

® The estimated shrinkage factors can be negative.
o IS <0iff
Y X} <k-2.
i
® Better estimator: restrict to ¢ > 0.

® "Positive part James-Stein estimator:”

8”" = max <0, - (k_)/k> X.

X2
® Dominates James-Stein.

® We will focus on the JS-estimator for analytical tractability.
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Second motivation of JS: Parametric empirical Bayes
Setup

e As before: 6 € Rf
o X|0 ~N(6,1)
® |oss L(@, 0)= Zi(é\i —6,)?

® Now add an additional conceptual layer:
Think of 6; as i.i.d. draws from some distribution.

e “Random effects vs. fixed effects”
® Let's consider 6; ~ N(0,72),

where 72 is unknown.
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Practice problem

® Derive the marginal distribution of X given 2.
® Find the maximum likelihood estimator of 7.
* Find the conditional expectation of 6 given X and 7°.

® Plug in the maximum likelihod estimator of 72 to get the empirical Bayes
estimator of 6.

19/36



Solution

® Marginal distribution:
X~N(0,(t°+1)- L)

e Maximum likelihood estimator of 72:

~ 1 X2
12 —argmax —— log(t>+ 1)+ L
gtz x 2ZI'< g ) (24+1)

=Xx2—1
e Conditional expectation of 6; given X;, 7°:

6 — Cov(6;,X;) X, T
Var(X,-)

~

® Plugging in 72
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General parametric empirical Bayes
Setup

e Data X,
parameters 6,
hyper-parameters 1

® | ikelihood
X16,1 ~ fx|o

® Family of priors
9‘77 ~ fb|n

® |imiting cases:
® 0 =1: Frequentist setup.

® 7 has only one possible value: Bayesian setup.
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Empirical Bayes estimation

® Marginal likelihood

Fim(im) = [ Fx1o(+16)fopn (6Im)de.
Has simple form when family of priors is conjugate.

® Estimator for hyper-parameter 1: marginal MLE
1 = argmax fx; (x|n).
ul

® Estimator for parameter 0: pseudo-posterior expectation

6 =E[0|X =x,n=T1].
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Third motivation of JS: Stein's Unbiased Risk Estimate

Stein's lemma (simplified version):

Suppose X ~ N(6,1;,).
® Suppose g(-) : R — R is differentiable and E[|g(X)]] < e°.

® Then
E[(X—0)-g(X)] =E[Vg(X)].

® Note:
® 0 shows up in the expression on the LHS, but not on the RHS

® Unbiased estimator of the RHS: Vg(X)
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Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ¢(-) satisfies

¢'(x) = —x- p(x).

2. Consider each component i separately and use integration by parts.
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Solution

® Recall that @(x) = (27)7% -exp(—x?/2).
Differentiation immediately yields the first claim.

® Consider the component i = 1; the others follow similarly. Then

E[dxg(X)] =

k

:/x o /x I 81, k) @(x *91)'1_I2‘P(Xi*9i)dx1
X X .

:/XZ - /X, 81, %) (= ol —91))-]1<p(xi—9i)dx1
k

:/ / g(x17...7xk) .(xl—el)(p(xl—el). (P(xi_ei)dxl-..
Jxg,exp Jxy u

=E[(X1 — 61)-g(X)].
® Collecting the components i = 1,...,k yields

E[(X—86)-g(X)] =E[Vg(X)].

dxk

dxk

dxk
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Stein’s representation of risk

e Consider a general estimator for 6 of the form 6 = 6(X) = X + g(X), for
differentiable g.

® Recall that the risk function is defined as
=YL El(6:-6)°]
e We will show that this risk function can be rewritten as

k+Z )?]+2E[dy,8i(X)]) .

Practice problem

® |Interpret this expression.

® Propose an unbiased estimator of risk, based on this expression.
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Answer

® The expression of risk has 3 components:
1. k is the risk of the canonical estimator 8 = X, corresponding to g =0.

2. YE[gi(X)?] = X;E[(6;—X;)?] is the sample sum of squared errors.
3. Y, E[0ygi(X)] can be thought of as a penalty for overfitting.

® We thus can think of this expression as giving a “penalized least squares”
objective.

® The sample analog expression gives “Stein’s Unbiased Risk Estimate” (SURE)

§=k+z (@—X,-)2+2.Zax,.gi(x).
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® We will use Stein's representation of risk in 2 ways:
1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).

2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein's representation of risk.
Hints:

® Add and subtract X; in the expression defining R(/B\,B).

® Use Stein's lemma.
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Solution

=Y E[(Xi—6)° +O—X)? 26— X)) (Xi— 6)]
=y +E [:i(X)?] +2E[gi(X) - (X; — 6)]
-y +E[2:(X)?] +2E [0x,8i(X)],

where Stein's lemma was used in the last step.
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Using SURE to pick the tuning parameter

® First use of SURE: To pick tuning parameters, as an alternative to cross-validation
or marginal likelihood maximization.

® Simple example: Linear shrinkage estimation

~

0=c-X.

Practice problem

e Calculate Stein's unbiased risk estimate for 8.

® Find the coefficient ¢ minimizing estimated risk.
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Solution

Estimated risk:

R=k+(1—c)* Y X?+2k-(c—1).

First order condition for minimizing R:
k=(1—-c")-Y x7.
i
Thus

C*:l—:.
XZ

Once again: Almost the JS estimator, up to degrees of freedom correction!
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Celebrated result: Dominance of the JS-estimator

® We next use the population version of SURE to prove uniform dominance of the
JS-estimator relative to maximum likelihood.

® Recall that the James-Stein estimator was defined as

8" = (1—("_)/1‘)-)(.

)(2

~ML
® Claim: The JS-estimator has uniformly lower risk than 8 =X.

Practice problem

Prove this, using Stein’s representation of risk.
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Solution

~ML
® The risk of 6  is equal to k.

e For JS, we have

~JS
gi(X)=6; —X;=

axigi(X) =
® Summing over components gives
Y sX) =
i

Zaxigi(X) ==

k—2
o7 X and
LjX;
k—2 2X?
2 —1+ 2
XX LjX]
k—2)?
%, and
LjX;
(k—2)?
LiX;
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Solution continued

® Plugging into Stein's expression for risk then gives

R(©”,0)=k+E

Zgi(x)2 +2Z<9x,-gi(x)

(k=2)* (k=2)

LX X

e[

=k+E

2
e The term =21 is always positive (for k > 3), and thus so is its expectation.

riX;
Uniform dominance immediately follows.

® Pretty cool, no?
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