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Applications from my own work

® Optimal treatment assignment in experiments.
® Setting: Treatment assignment given baseline covariates

® General decision theory result:
Non-random rules dominate random rules

® Prior for expectation of potential outcomes given covariates

® Expression for MSE of estimator for ATE
to minimize by treatment assignment

e Optimal insurance and taxation.
® Review: Envelope theorem.

® Economic setting: Co-insurance rate for health insurance
® Statistical setting: prior for behavioral average response function

® Expression for posterior expected social welfare
to maximize by choice of co-insurance rate
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Applications use Gaussian process priors

1. Optimal experimental design
® How to assign treatment to minimize mean squared error for treatment effect

estimators?

® Gaussian process prior for the conditional expectation of potential outcomes given
covariates.

2. Optimal insurance and taxation
® How to choose a co-insurance rate or tax rate to maximize social welfare, given
(quasi-)experimental data?

® Gaussian process prior for the behavioral response function
mapping the co-insurance rate into the tax base.
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Experimental design

Optimal insurance and taxation
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Experimental design: Setup

1. Sampling:
random sample of n units
baseline survey = vector of covariates X;

2. Treatment assignment:
binary treatment assigned by D; = d;(X,U)
X matrix of covariates; U randomization device

3. Realization of outcomes:
Y; =Dy} +(1-D)Y?

4. Estimation:
estimator 8 of the (conditional) average treatment effect, § = 1 ¥, E[Y! — Y?|X;, 6]
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Questions

How should we assign treatment?

In particular, if X; has continuous or many discrete components?

How should we estimate 37

What is the role of prior information?
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Some intuition

“Compare apples with apples”
= balance covariate distribution.

Not just balance of means!

We don’t add random noise to estimators
— why add random noise to experimental designs?

Identification requires controlled trials (CTs),
but not randomized controlled trials (RCTs).
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General decision problem allowing for randomization

® General decision problem:

® State of the world 0, observed data X,
randomization device U | X,

® decision procedure §(X,U), loss L(8(X,U),0).
¢ Conditional expected loss of decision procedure 6(X,U):
R(8,6|U = u) = E[L(6(X,u),6)[6]

® Bayes risk:

RE(8,7) = //R(5,6|U — w)d7(6)dP(u)

® Minimax risk:
R™(8) = / max (3, 6]U = u)dP(u)
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Consider a general decision problem.
Let R* equal RB or R™". Then:

1. The optimal risk R*(0*), when considering only deterministic procedures 6(X), is
no larger than the optimal risk when allowing for randomized procedures §(X,U).

2. If the optimal deterministic procedure 6* is unique, then it has strictly lower risk
than any non-trivial randomized procedure.
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Practice problem

Proof this.
Hints:

® Assume for simplicity that U has finite support.

® Note that a (weighted) average of numbers is always at least as large as their
minimum.

e Write the risk (Bayes or minimax) of any randomized assignment rule as
(weighted) average of the risk of deterministic rules.
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Solution
e Any probability distribution P(u) satisfies
® Y. Pu)=1, P(u) >0 for all u.

® Thus ¥, Ry - P(«) > min, R, for any set of values Ry.
o Let 8"(x) = 5(x,u).
® Then
RE(S,7) = Z/R(S”,G)dn(G)P(u)

> min/R(S“,G)dn(B) — minRE (8", 7).

® Similarly

R™(8) = Y maxR(8",0)P(u)

u

> minmeaxR(Su, 0) = minR™(3").
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Bayesian setup

® Back to experimental design setting.
e Conditional distribution of potential outcomes: for d =0, 1
Y{|Xi =x ~N(f(x.d),0%).

® Gaussian process prior:

[~ GP(u,C),
E[f(x,d)] = pu(x,d)
Cov(f(x1,d1), f(x2,d2)) = C((x1,d1), (x2,d2))

¢ Conditional average treatment effect (CATE):

_2;15[ —Y0|X;,0] = fo,,l f(Xi,0).
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Notation:
® Covariance matrix C, where Ci,j = C((Xi,Di), (X],D]>)

® Mean vector i, components ; = u(X;,D;)
e Covariance of observations with CATE,
C;=Cov(Y;,B|X,D)

*Z ((X;, D), (X, 1)) = C((X;, Di), (X;,0))) -

Practice problem

® Derive the posterior expectation 8 of .

® Derive the risk of any deterministic treatment assignment vector d, assuming
1. The estimator f3 is used.

2. The loss function (lgfﬂ)2 is considered.
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Solution

® The posterior expectation E of B equals

~

B=ug+C-(C+a)"- (¥ —p).
® The corresponding risk equals

RB(d, B|X) = Var(B|X,Y)
= Var(B|X) — Var(E[B|X,Y]|X)
= Var(B|X)—-C - (C+ %)~ -C.
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Discrete optimization

® The optimal design solves
mglxél (C+ao’7'.C.

® Possible optimization algorithms:
1. Search over random d

2. greedy algorithm

3. simulated annealing
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Variation of the problem

Practice problem

® Suppose that the researcher insists on estimating B using a simple comparison of
means,

® Derive again the risk of any deterministic treatment assignment vector d,
assuming

1. The estimator B is used.

2. The loss function (B — B)? is considered.
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Solution

® Notation: o
* Let uf = pu(X;,d) and C{ " = C((X;,d"), (X;,d?)).

. . 1 52 ~
® Collect these terms in the vectors u¢ and matrices C? ", and let g = (u',u?),

. COO COI
C= ( ClO Cl] .

® Weights
w=wwh),
W= b1
w? =— 1;Od" + %
® Risk: Sum of variance and squared bias,
RB(d, B|X) = o [nll—l—nlo] + (w’-ﬁ)2+w’-5-w.
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Special case linear separable model
® Suppose

fle,d)=x"-y+d-B,
Yy~ N(0,X),

and we estimate 8 using comparison of means.

® Bias of B equals (Yl —YO)’-}/, prior expected squared bias

1 0

@ -x".rx-x

~x%.

® Mean squared error

1] o
MSE(dy,....d,) = 62 [+] +x =X X =X).

ni no
® —-Risk is minimized by
1. choosing treatment and control arms of equal size,

2. and optimizing balance as measured by the difference in covariate means (X —X ).

-0
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Review: The envelope theorem

® Policy parameter ¢

® Vector of individual choices x

Choice set 2~

Individual utility v(x,)

Realized choices

x(t) € argmax v(x,1).
xe&

Realized utility

V(t)= iré%(v(x,t) = v(x(t),1)
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Let x* = x(¢*) for some fixed ¢*

Define
V(t)=V(t)—v(x* 1) (1)
= 0(x(1),1) —v(x(t"),1)
:?é%(v(x,t) —0(x",1) (2)

Definition of V immediately implies:
® V(¢t) >0 forall t and V(¢*) = 0.

® Thus: ¢* is a global minimizer of V.
If V is differentiable at t*: V/(+*) =0
Thus

0
V/(t*) = ED(X*JNIZI’H

Behavioral responses don't matter for effect of policy change on individual utility!
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Optimal insurance and taxation



Optimal insurance and taxation: Setup

® Population of insured individuals i.

Y;: health care expenditures of individual i.

T;: share of health care expenditures covered by the insurance
1 —T;: coinsurance rate; Y;- (1 —T;): out-of-pocket expenditures

Behavioral response to share covered: structural function

Y, =g(T;,&).

Per capita expenditures under policy t: average structural function

m(t) = E[g(1, &)].
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Policy objective
® Insurance provider's expenditures per person: f-m(t).
® Mechanical effect of increase in ¢ (accounting):

m(t)dt.
® Behavioral effect of increase in ¢ (key empirical challenge):
t-m'(t)dt.

e Utility of the insured:
® Mechanical effect of increase in ¢ (accounting):

m(t)dt.
® Behavioral effect: None, by envelope theorem.

® = effect on utility = equivalent variation = mechanical effect

® Assign relative value A > 1 to a marginal dollar for the sick vs. the insurer.
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Practice problem

e Write the effect «'(r) on social welfare u of an increase in ¢ as a sum of
mechanical and behavioral effects on individual welfare and insurer revenues.

® Set u(0) =0 and integrate to obtain an expression for social welfare.
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Solution

® Marginal effect of a change in ¢ on social welfare:

Wt)y=A—1)-mt)—t-m'(t) = Am(t) — ai(t m(t)). (3)
® Integrating and imposing the normalization u(0) = 0:
?L/ xX)dx—t-m(t). (4)

® Special case A = 1: "Harberger triangle” (not the relevant case)
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Observed data and prior

® niid. draws of (¥;,T;)
® T; was randomly assigned in an experiment, so that 7; L ¢;, and
EWY|T =1] =E[g(t,&)|T; =1] = E[g(t,&)] = m(1).
® Y; is normally distributed given T;,
Yi|T; =t ~ N(m(t),0?).
e Gaussian process prior for m(-),

m(-) ~ GP(u(-),C(--)).
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Practice problem

® What is the prior distribution of u(t) = A [y m(x)dx—1t-m(t)?
® What is the prior covariance of u(t) and Y given T7?

® What is the posterior expectation of u(t) given Y and T7
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Solution

® Linear functions of normal vectors are normal.
® |inear operators of Gaussian processes are Gaussian processes.

® Prior moments:

V(0 = Elule)) = 2 [ pd—r-u0),

D(t,') = Cov(u(t),m(t'))) = A - / (e, )dx—1-C(1,),

Var(u(t)) = A2 / / (x,x")dx' dx

—m-/ Clx,1)dx+12-C(1,1).
0
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e (Covariance with data:

D(t) = Cov(u(t),Y|T) = Cov(u(t),( m(Th),...,m(T,))|T)
=(D(t,Ty),...,D(t,T,)).

® Posterior expectation of u(z):

a(r)

Elu@)|Y,T]
E[u(t)|T] + Cov(u(t),Y|T) - Var(Y|T) " - (¥ — E[Y|T])
v(e)+D(t)-[C+0%T] - (Y — ).
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Optimal policy choice

® Bayesian policy maker aims to maximize expected social welfare
(note: different from expectation of maximizer of social welfare!)

® Thus
=1"(Y,T) € argmax u(t).
t

® First order condition

Su(r*) =EN(7)|y,T]

— V(%) +B() - [C+0X] - (Y —u) =0,

where B(t) = (B(t,T),...,B(t,T,)) and

B(t,f') = Cov (gu(z),m(z’)) = 2D(1,7)
=A-1)-C(t,t')—1t- atC(tt)
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Production objective
® Another important class of policy problems:
® Observable outcome Y; (e.g. student test scores)
® Input vector T; € R% (e.g., teachers per student, ...)
¢ (educational) production function

Y; :g(Ti78i)'

Policy maker's objective is to maximize average (expected) outcomes EY;] across
schools, net of the cost of inputs.

® Unit-price of input j: p;.

Willingness to pay for a unit-increase in Y: A
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Yields the objective function
ut)=2A-m(t)—p-t.
Same type of data and prior as before.

Posterior expectation:

u(t)=v(t)+D(t) - [C+o%l] (Y —p),
v(t)=24-u(t)—p-t,
D(t,t') =21 -C(t,1).

First order condition:
3

@) =V () +B()- [C+0%1] (Y —p) =0.

where now B(t,') = A - %C(r,t’).
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The RAND health insurance experiment
e (cf. Aron-Dine et al., 2013)

® Between 1974 and 1981
representative sample of 2000 households
in six locations across the US

® families randomly assigned to
plans with one of six consumer coinsurance rates

® 95, 50, 25, or 0 percent
2 more complicated plans (we drop those)

o Additionally: randomized Maximum Dollar Expenditure limits
5, 10, or 15 percent of family income,
up to a maximum of $750 or $1,000
(we pool across those)

31/36



Table: Expected spending for different coinsurance rates

(1) (2) (3) (4)

Share with  Spending Share with  Spending

any in$ any in$

Free Care 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)

25% Coinsurance 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)

50% Coinsurance 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)

95% Coinsurance 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)

family x month x site X X X X
fixed effects

covariates X X

N 14777 14777 14777 14777
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Assumptions

1. Model: The optimal insurance model as presented before

2. Prior: Gaussian process prior for m, squared exponential in distance,
uninformative about level and slope

3. Relative value of funds for sick people vs contributors:
A=1.5

4. Pooling data: across levels of maximum dollar expenditure

Under these assumptions we find:

Optimal copay equals 18%
(But free care is almost as good)
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