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Applications from my own work
• Optimal treatment assignment in experiments.

• Setting: Treatment assignment given baseline covariates

• General decision theory result:
Non-random rules dominate random rules

• Prior for expectation of potential outcomes given covariates

• Expression for MSE of estimator for ATE
to minimize by treatment assignment

• Optimal insurance and taxation.
• Review: Envelope theorem.

• Economic setting: Co-insurance rate for health insurance

• Statistical setting: prior for behavioral average response function

• Expression for posterior expected social welfare
to maximize by choice of co-insurance rate
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Applications use Gaussian process priors

1. Optimal experimental design
• How to assign treatment to minimize mean squared error for treatment effect

estimators?

• Gaussian process prior for the conditional expectation of potential outcomes given
covariates.

2. Optimal insurance and taxation
• How to choose a co-insurance rate or tax rate to maximize social welfare, given

(quasi-)experimental data?

• Gaussian process prior for the behavioral response function
mapping the co-insurance rate into the tax base.
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Experimental design

Optimal insurance and taxation
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Experimental design: Setup

1. Sampling:
random sample of n units
baseline survey ⇒ vector of covariates Xi

2. Treatment assignment:
binary treatment assigned by Di = di(X ,U)
X matrix of covariates; U randomization device

3. Realization of outcomes:
Yi = DiY 1

i +(1−Di)Y 0
i

4. Estimation:
estimator β̂ of the (conditional) average treatment effect, β = 1

n ∑i E[Y 1
i −Y 0

i |Xi,θ ]
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Questions

• How should we assign treatment?

• In particular, if Xi has continuous or many discrete components?

• How should we estimate β?

• What is the role of prior information?
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Some intuition

• “Compare apples with apples”
⇒ balance covariate distribution.

• Not just balance of means!

• We don’t add random noise to estimators
– why add random noise to experimental designs?

• Identification requires controlled trials (CTs),
but not randomized controlled trials (RCTs).
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General decision problem allowing for randomization

• General decision problem:
• State of the world θ , observed data X ,

randomization device U ⊥ X ,

• decision procedure δ (X ,U), loss L(δ (X ,U),θ).

• Conditional expected loss of decision procedure δ (X ,U):

R(δ ,θ |U = u) = E[L(δ (X ,u),θ)|θ ]

• Bayes risk:

RB(δ ,π) =
∫ ∫

R(δ ,θ |U = u)dπ(θ)dP(u)

• Minimax risk:

Rmm(δ ) =
∫

max
θ

R(δ ,θ |U = u)dP(u)
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Theorem (Optimality of deterministic decisions)

Consider a general decision problem.
Let R∗ equal RB or Rmm. Then:

1. The optimal risk R∗(δ ∗), when considering only deterministic procedures δ (X), is
no larger than the optimal risk when allowing for randomized procedures δ (X ,U).

2. If the optimal deterministic procedure δ ∗ is unique, then it has strictly lower risk
than any non-trivial randomized procedure.
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Practice problem

Proof this.
Hints:

• Assume for simplicity that U has finite support.

• Note that a (weighted) average of numbers is always at least as large as their
minimum.

• Write the risk (Bayes or minimax) of any randomized assignment rule as
(weighted) average of the risk of deterministic rules.
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Solution
• Any probability distribution P(u) satisfies

• ∑u P(u) = 1, P(u)≥ 0 for all u.

• Thus ∑u Ru ·P(u)≥ minu Ru for any set of values Ru.

• Let δ u(x) = δ (x,u).

• Then

RB(δ ,π) = ∑
u

∫
R(δ u,θ)dπ(θ)P(u)

≥ min
u

∫
R(δ u,θ)dπ(θ) = min

u
RB(δ u,π).

• Similarly

Rmm(δ ) = ∑
u

max
θ

R(δ u,θ)P(u)

≥ min
u

max
θ

R(δ u,θ) = min
u

Rmm(δ u).
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Bayesian setup
• Back to experimental design setting.

• Conditional distribution of potential outcomes: for d = 0,1

Y d
i |Xi = x ∼ N( f (x,d),σ2).

• Gaussian process prior:

f ∼ GP(µ,C),

E[ f (x,d)] = µ(x,d)

Cov( f (x1,d1), f (x2,d2)) =C((x1,d1),(x2,d2))

• Conditional average treatment effect (CATE):

β =
1
n ∑

i
E[Y 1

i −Y 0
i |Xi,θ ] =

1
n ∑

i
f (Xi,1)− f (Xi,0).
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Notation:

• Covariance matrix C, where Ci, j =C((Xi,Di),(X j,D j))

• Mean vector µ, components µi = µ(Xi,Di)

• Covariance of observations with CATE,

Ci = Cov(Yi,β |X ,D)

=
1
n ∑

j
(C((Xi,Di),(X j,1))−C((Xi,Di),(X j,0))) .

Practice problem

• Derive the posterior expectation β̂ of β .

• Derive the risk of any deterministic treatment assignment vector d, assuming

1. The estimator β̂ is used.

2. The loss function (β̂ −β )2 is considered.
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Solution

• The posterior expectation β̂ of β equals

β̂ = µβ +C′ · (C+σ
2I)−1 · (Y −µ).

• The corresponding risk equals

RB(d, β̂ |X) = Var(β |X ,Y )

= Var(β |X)−Var(E[β |X ,Y ]|X)

= Var(β |X)−C′ · (C+σ
2I)−1 ·C.
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Discrete optimization

• The optimal design solves

max
d

C′ · (C+σ
2I)−1 ·C.

• Possible optimization algorithms:

1. Search over random d

2. greedy algorithm

3. simulated annealing
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Variation of the problem

Practice problem

• Suppose that the researcher insists on estimating β using a simple comparison of
means,

β̂ =
1
n1

∑
i

DiYi −
1
n0

∑
i
(1−Di)Yi.

• Derive again the risk of any deterministic treatment assignment vector d,
assuming

1. The estimator β̂ is used.

2. The loss function (β̂ −β )2 is considered.
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Solution
• Notation:

• Let µd
i = µ(Xi,d) and Cd1,d2

i, j =C((Xi,d1),(X j,d2)).

• Collect these terms in the vectors µd and matrices Cd1,d2
, and let µ̃ = (µ1,µ2),

C̃ =

(
C00 C01

C10 C11

)
.

• Weights

w = (w0,w1),

w1
i =

di
n1
− 1

n ,

w0
i =− 1−di

n0
+ 1

n .

• Risk: Sum of variance and squared bias,

RB(d, β̂ |X) = σ
2 ·
[

1
n1

+
1
n0

]
+
(
w′ · µ̃

)2
+w′ ·C̃ ·w.
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Special case linear separable model
• Suppose

f (x,d) = x′ · γ +d ·β ,
γ ∼ N(0,Σ),

and we estimate β using comparison of means.

• Bias of β̂ equals (X1 −X0
)′ · γ, prior expected squared bias

(X1 −X0
)′ ·Σ · (X1 −X0

).

• Mean squared error

MSE(d1, . . . ,dn) = σ
2 ·
[

1
n1

+
1
n0

]
+(X1 −X0

)′ ·Σ · (X1 −X0
).

• ⇒Risk is minimized by
1. choosing treatment and control arms of equal size,

2. and optimizing balance as measured by the difference in covariate means (X1 −X0
).
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Review: The envelope theorem

• Policy parameter t

• Vector of individual choices x

• Choice set X

• Individual utility υ(x, t)

• Realized choices
x(t) ∈ argmax

x∈X
υ(x, t).

• Realized utility
V (t) = max

x∈X
υ(x, t) = υ(x(t), t)
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• Let x∗ = x(t∗) for some fixed t∗

• Define

Ṽ (t) =V (t)−υ(x∗, t) (1)

= υ(x(t), t)−υ(x(t∗), t)

= max
x∈X

υ(x, t)−υ(x∗, t). (2)

• Definition of Ṽ immediately implies:
• Ṽ (t)≥ 0 for all t and Ṽ (t∗) = 0.

• Thus: t∗ is a global minimizer of Ṽ .

• If Ṽ is differentiable at t∗: Ṽ ′(t∗) = 0

• Thus

V ′(t∗) =
∂

∂ t
υ(x∗, t)|t=t∗ ,

• Behavioral responses don’t matter for effect of policy change on individual utility!
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Experimental design

Optimal insurance and taxation
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Optimal insurance and taxation: Setup

• Population of insured individuals i.

• Yi: health care expenditures of individual i.

• Ti: share of health care expenditures covered by the insurance
1−Ti: coinsurance rate; Yi · (1−Ti): out-of-pocket expenditures

• Behavioral response to share covered: structural function

Yi = g(Ti,εi).

• Per capita expenditures under policy t: average structural function

m(t) = E[g(t,εi)].
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Policy objective
• Insurance provider’s expenditures per person: t ·m(t).

• Mechanical effect of increase in t (accounting):

m(t)dt.

• Behavioral effect of increase in t (key empirical challenge):

t ·m′(t)dt.

• Utility of the insured:
• Mechanical effect of increase in t (accounting):

m(t)dt.

• Behavioral effect: None, by envelope theorem.

• ⇒ effect on utility = equivalent variation = mechanical effect

• Assign relative value λ > 1 to a marginal dollar for the sick vs. the insurer.
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Practice problem

• Write the effect u′(t) on social welfare u of an increase in t as a sum of
mechanical and behavioral effects on individual welfare and insurer revenues.

• Set u(0) = 0 and integrate to obtain an expression for social welfare.
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Solution

• Marginal effect of a change in t on social welfare:

u′(t) = (λ −1) ·m(t)− t ·m′(t) = λm(t)− ∂

∂ t (t ·m(t)). (3)

• Integrating and imposing the normalization u(0) = 0:

u(t) = λ

∫ t

0
m(x)dx− t ·m(t). (4)

• Special case λ = 1: “Harberger triangle” (not the relevant case)
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Observed data and prior

• n i.i.d. draws of (Yi,Ti)

• Ti was randomly assigned in an experiment, so that Ti ⊥ εi, and

E[Yi|Ti = t] = E[g(t,εi)|Ti = t] = E[g(t,εi)] = m(t).

• Yi is normally distributed given Ti,

Yi|Ti = t ∼ N(m(t),σ2).

• Gaussian process prior for m(·),

m(·)∼ GP(µ(·),C(·, ·)).
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Practice problem

• What is the prior distribution of u(t) = λ
∫ t

0 m(x)dx− t ·m(t)?

• What is the prior covariance of u(t) and Y given T?

• What is the posterior expectation of u(t) given Y and T?
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Solution

• Linear functions of normal vectors are normal.

• Linear operators of Gaussian processes are Gaussian processes.

• Prior moments:

ν(t) = E[u(t)] = λ

∫ t

0
µ(x)dx− t ·µ(t),

D(t, t ′) = Cov(u(t),m(t ′))) = λ ·
∫ t

0
C(x, t ′)dx− t ·C(t, t ′),

Var(u(t)) = λ
2 ·

∫ t

0

∫ t

0
C(x,x′)dx′dx

−2λ t ·
∫ t

0
C(x, t)dx+ t2 ·C(t, t).
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• Covariance with data:

D(t) = Cov(u(t),Y |T ) = Cov(u(t),(m(T1), . . . ,m(Tn))|T )
= (D(t,T1), . . . ,D(t,Tn)).

• Posterior expectation of u(t):

û(t) = E[u(t)|Y ,T ]
= E[u(t)|T ]+Cov(u(t),Y |T ) ·Var(Y |T )−1 · (Y −E[Y |T ])

= ν(t)+D(t) ·
[
C+σ

2I
]−1 · (Y −µ).
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Optimal policy choice
• Bayesian policy maker aims to maximize expected social welfare
(note: different from expectation of maximizer of social welfare!)

• Thus
t̂∗ = t̂∗(Y ,T ) ∈ argmax

t
û(t).

• First order condition

∂

∂ t û(t̂∗) = E[u′(t̂∗)|Y ,T ]

= ν
′(t̂∗)+B(t̂∗) ·

[
C+σ

2I
]−1 · (Y −µ) = 0,

where B(t) = (B(t,T1), . . . ,B(t,Tn)) and

B(t, t ′) = Cov
(

∂

∂ t u(t),m(t ′)
)
= ∂

∂ t D(t, t ′)

= (λ −1) ·C(t, t ′)− t · ∂

∂ t C(t, t ′).

28 / 36



Production objective

• Another important class of policy problems:

• Observable outcome Yi (e.g. student test scores)

• Input vector Ti ∈ Rdt (e.g., teachers per student, ...)

• (educational) production function

Yi = g(Ti,εi).

• Policy maker’s objective is to maximize average (expected) outcomes E[Yi] across
schools, net of the cost of inputs.

• Unit-price of input j: p j.

• Willingness to pay for a unit-increase in Y : λ
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• Yields the objective function

u(t) = λ ·m(t)− p · t.

• Same type of data and prior as before.

• Posterior expectation:

û(t) = ν(t)+D(t) ·
[
C+σ

2I
]−1 · (Y −µ),

ν(t) = λ ·µ(t)− p · t,
D(t, t ′) = λ ·C(t, t ′).

• First order condition:

û′(t̂∗) = ν
′(t̂∗)+B(t̂∗) ·

[
C+σ

2I
]−1 · (Y −µ) = 0.

where now B(t, t ′) = λ · ∂

∂ t C(t, t ′).
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The RAND health insurance experiment

• (cf. Aron-Dine et al., 2013)

• Between 1974 and 1981
representative sample of 2000 households
in six locations across the US

• families randomly assigned to
plans with one of six consumer coinsurance rates

• 95, 50, 25, or 0 percent
2 more complicated plans (we drop those)

• Additionally: randomized Maximum Dollar Expenditure limits
5, 10, or 15 percent of family income,
up to a maximum of $750 or $1,000
(we pool across those)
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Table: Expected spending for different coinsurance rates

(1) (2) (3) (4)
Share with Spending Share with Spending

any in $ any in $
Free Care 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)
25% Coinsurance 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)
50% Coinsurance 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)
95% Coinsurance 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)
family x month x site X X X X
fixed effects

covariates X X
N 14777 14777 14777 14777
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Assumptions

1. Model: The optimal insurance model as presented before

2. Prior: Gaussian process prior for m, squared exponential in distance,
uninformative about level and slope

3. Relative value of funds for sick people vs contributors:
λ = 1.5

4. Pooling data: across levels of maximum dollar expenditure

Under these assumptions we find:

Optimal copay equals 18%
(But free care is almost as good)
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