Foundations of machine learning Gaussian process priors

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

Outline

- 6 equivalent representations of the posterior mean in the Normal-Normal model.
- Gaussian process priors for regression functions.
- Bonus slides: Reproducing Kernel Hilbert Spaces and splines.
- Applications from my own work, to
	- 1. Optimal treatment assignment in experiments.
	- 2. Optimal insurance and taxation.

Takeaways for this part of class

- In a Normal means model with Normal prior, there are a number of equivalent ways to think about regularization.
- Posterior mean, penalized least squares, shrinkage, etc.
- We can extend from estimation of means to estimation of functions using Gaussian process priors.
- Gaussian process priors yield the same function estimates as penalized least squares regressions.

[Normal posterior means – equivalent representations](#page-3-0)

[Gaussian process regression](#page-14-0)

[References](#page-25-0)

Normal posterior means – equivalent representations **Setup**

- $\bullet\ \theta\in\mathbb{R}^k$
- \bullet *X*| θ ∼ *N*(θ *,I_k*)
- Loss

$$
L(\widehat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \sum_i (\widehat{\theta}_i - \theta_i)^2
$$

• Prior

 $\theta \sim N(0,C)$

6 equivalent representations of the posterior mean

- 1. Minimizer of weighted average risk
- 2. Minimizer of posterior expected loss
- 3. Posterior expectation
- 4. Posterior best linear predictor
- 5. Penalized least squares estimator
- 6. Shrinkage estimator

1) Minimizer of weighted average risk

• Minimize weighted average risk $(=$ Bayes risk),

• averaging loss
$$
L(\widehat{\theta}, \theta) = (\widehat{\theta} - \theta)^2
$$
 over both

- 1. the sampling distribution $f_{X|\theta}$, and
- 2. weighting values of θ using the decision weights (prior) π_{θ} .

• Formally,

$$
\widehat{\boldsymbol{\theta}}(\cdot) = \underset{t(\cdot)}{\text{argmin}} \int E_{\boldsymbol{\theta}}[L(t(X), \boldsymbol{\theta})] d\pi(\boldsymbol{\theta}).
$$

2) Minimizer of posterior expected loss

• Minimize posterior expected loss,

• averaging loss
$$
L(\widehat{\theta}, \theta) = (\widehat{\theta} - \theta)^2
$$
 over
1. just the posterior distribution $\pi_{\theta|X}$.

• Formally,

$$
\widehat{\theta}(x) = \underset{t}{\text{argmin}} \int L(t,\theta) d\pi_{\theta|X}(\theta|x).
$$

3 and 4) Posterior expectation and posterior best linear predictor

• Note that

$$
\begin{pmatrix} X \\ \theta \end{pmatrix} \sim N\left(0, \begin{pmatrix} C+I & C \\ C & C \end{pmatrix}\right).
$$

• Posterior expectation:

$$
\widehat{\theta} = E[\theta|X].
$$

• Posterior best linear predictor:

$$
\widehat{\theta} = E^*[\theta|X] = C \cdot (C+I)^{-1} \cdot X.
$$

5) Penalization

• Minimize

- 1. the sum of squared residuals,
- 2. plus a quadratic penalty term.
- Formally,

$$
\widehat{\theta} = \underset{t}{\text{argmin}} \sum_{i=1}^{n} (X_i - t_i)^2 + ||t||^2,
$$

• where

 $||t||^2 = t'C^{-1}t.$

6) Shrinkage

- Diagonalize *C*: Find
	- 1. orthonormal matrix *U* of eigenvectors, and
	- 2. diagonal matrix *D* of eigenvalues, so that

 $C = UDU'$.

• Change of coordinates, using *U*:

$$
\tilde{X} = U'X
$$

$$
\tilde{\theta} = U'\theta.
$$

• Componentwise shrinkage in the new coordinates:

$$
\widehat{\tilde{\theta}}_i = \frac{d_i}{d_i + 1} \tilde{X}_i.
$$
\n(1)

Practice problem

Show that these 6 objects are all equivalent to each other.

Solution (sketch)

- 1. Minimizer of weighted average risk $=$ minimizer of posterior expected loss: See decision slides.
- 2. Minimizer of posterior expected loss $=$ posterior expectation:
	- First order condition for quadratic loss function,
	- pull derivative inside,
	- and switch order of integration.
- 3. Posterior expectation $=$ posterior best linear predictor:
	- *X* and *θ* are jointly Normal,
	- conditional expectations for multivariate Normals are linear.
- 4. Posterior expectation \Rightarrow penalized least squares:
	- Posterior is symmetric unimodal \Rightarrow posterior mean is posterior mode.
	- Posterior mode $=$ maximizer of posterior log-likelihood $=$ maximizer of joint log likelihood,
	- since denominator f_X does not depend on θ . 11/23

Solution (sketch) continued

- 5. Penalized least squares $⇒$ posterior expectation:
	- Any penalty of the form

t ′*At*

for *A* symmetric positive definite

• corresponds to the log of a Normal prior

$$
\theta \sim N\left(0,A^{-1}\right).
$$

- 6. Componentwise shrinkage $=$ posterior best linear predictor:
	- Change of coordinates turns $\widehat{\theta} = C \cdot (C + I)^{-1} \cdot X$ into

$$
\widehat{\widetilde{\theta}} = D \cdot (D + I)^{-1} \cdot X.
$$

• Diagonality implies

$$
D \cdot (D + I)^{-1} = \text{diag}\left(\frac{d_i}{d_i + 1}\right).
$$

[Normal posterior means – equivalent representations](#page-3-0)

[Gaussian process regression](#page-14-0)

[References](#page-25-0)

Gaussian processes for machine learning Machine Learning ⇔ metrics dictionary

Gaussian prior for linear regression

- Normal linear regression model:
- Suppose we observe *n* i.i.d. draws of (Y_i, X_i) , where Y_i is real valued and X_i is a k vector.
- $Y_i = X_i \cdot \beta + \varepsilon_i$
- \bullet $\varepsilon_i | X, \beta \sim N(0, \sigma^2)$
- β|*X* ∼ *N*(0,Ω) (prior)
- Note: will leave conditioning on *X* implicit in following slides.

Practice problem ("weight space view")

- Find the posterior expectation of β
- Hints:
	- 1. The posterior expectation is the maximum a posteriori.
	- 2. The log likelihood takes a penalized least squares form.
- Find the posterior expectation of $x \cdot \beta$ for some (non-random) point *x*.

Solution

• Joint log likelihood of Y, β :

$$
\log(f_{Y\beta}) = \log(f_{Y|\beta}) + \log(f_{\beta})
$$

= const.
$$
-\frac{1}{2\sigma^2} \sum_{i} (Y_i - X_i\beta)^2 - \frac{1}{2}\beta' \Omega^{-1} \beta.
$$

• First order condition for maximum a posteriori:

$$
0 = \frac{\partial f_{Y\beta}}{\partial \beta} = \frac{1}{\sigma^2} \sum_i (Y_i - X_i \beta) \cdot X_i - \beta' \Omega^{-1}.
$$

$$
\Rightarrow \quad \widehat{\beta} = \left(\sum_i X_i' X_i + \sigma^2 \Omega^{-1} \right)^{-1} \cdot \sum_i X_i' Y_i.
$$

• Thus

$$
E[x \cdot \beta | Y] = x \cdot \widehat{\beta} = x \cdot (X'X + \sigma^2 \Omega^{-1})^{-1} \cdot X'Y.
$$

- Previous derivation required inverting *k* ×*k* matrix.
- Can instead do prediction inverting an $n \times n$ matrix.
- *n* might be smaller than *k* if there are many "features."
- This will lead to a "function space view" of prediction.

Practice problem ("kernel trick")

• Find the posterior expectation of

$$
f(x) = E[Y|X = x] = x \cdot \beta.
$$

- Wait, didn't we just do that?
- Hints:
	- 1. Start by figuring out the variance / covariance matrix of $(x \cdot \beta, Y)$.
	- 2. Then deduce the best linear predictor of *x* · β given *Y*.

Solution

• The joint distribution of $(x \cdot \beta, Y)$ is given by

$$
\begin{pmatrix} x \cdot \beta \\ Y \end{pmatrix} \sim N \left(0, \begin{pmatrix} x\Omega x' & x\Omega X' \\ X\Omega x' & X\Omega X' + \sigma^2 I_n \end{pmatrix} \right)
$$

• Denote
$$
C = X\Omega X'
$$
 and $c(x) = x\Omega X'$.

• Then

$$
E[x \cdot \beta | Y] = c(x) \cdot (C + \sigma^2 I_n)^{-1} \cdot Y.
$$

• Contrast with previous representation:

$$
E[x \cdot \beta | Y] = x \cdot (X'X + \sigma^2 \Omega^{-1})^{-1} \cdot X'Y.
$$

General GP regression

- Suppose we observe *n* i.i.d. draws of (Y_i, X_i) , where Y_i is real valued and X_i is a k vector.
- $Y_i = f(X_i) + \varepsilon_i$
- \bullet $\varepsilon_i | X, f(\cdot) \sim N(0, \sigma^2)$
- Prior: *f* is distributed according to a Gaussian process,

 $f|X \sim GP(0, C),$

where *C* is a covariance kernel,

$$
Cov(f(x), f(x')|X) = C(x, x').
$$

• We will again leave conditioning on *X* implicit in following slides.

Practice problem

- Find the posterior expectation of $f(x)$.
- Hints:
	- 1. Start by figuring out the variance / covariance matrix of $(f(x), Y)$.
	- 2. Then deduce the best linear predictor of $f(x)$ given Y .

Solution

• The joint distribution of $(f(x), Y)$ is given by

$$
\begin{pmatrix} f(x) \\ Y \end{pmatrix} \sim N \begin{pmatrix} 0, \begin{pmatrix} C(x,x) & c(x) \\ c(x) & C + \sigma^2 I_n \end{pmatrix} \end{pmatrix},
$$

where

- $c(x)$ is the *n* vector with entries $C(x, X_i)$,
- and *C* is the $n \times n$ matrix with entries $C_{i,j} = C(X_i, X_j)$.
- Then, as before.

$$
E[f(x)|Y] = c(x) \cdot (C + \sigma^2 I_n)^{-1} \cdot Y.
$$

• Read: $\widehat{f}(\cdot) = E[f(\cdot)|Y]$

- is a linear combination of the functions $C(\cdot, X_i)$
- with weights $(C + \sigma^2 I_n)^{-1} \cdot Y$.

Hyperparameters and marginal likelihood

- Usually, covariance kernel $C(\cdot, \cdot)$ depends on on hyperparameters η .
- \bullet Example: squared exponential kernel with $\boldsymbol{\eta} = (l, \tau^2)$ (length-scale *l*, variance τ^2).

$$
C(x,x') = \tau^2 \cdot \exp\left(-\frac{1}{2l}||x-x'||^2\right)
$$

• Following the empirical Bayes paradigm, we can estimate η by maximizing the marginal log likelihood:

$$
\widehat{\eta} = \underset{\eta}{\operatorname{argmax}} \ -\frac{1}{2} |\det(C_{\eta} + \sigma^2 I)| - \frac{1}{2} Y'(C_{\eta} + \sigma^2 I)^{-1} Y
$$

• Alternatively, we could choose η using cross-validation or Stein's unbiased risk estimate.

- Gaussian process priors: *Williams, C. and Rasmussen, C. (2006).* Gaussian processes for machine learning*. MIT Press, chapter 2.*
- Splines and Reproducing Kernel Hilbert Spaces *Wahba, G. (1990).* Spline models for observational data*, volume 59. Society for Industrial Mathematics, chapter 1.*