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Outline

® Variational auto-encoders.
® Self-prediction with a “bottleneck.”

® Encoder and decoder models.

® Diffusion models.
® Special case of hierarchical autoencoders.

® Fix the encoder model: Just add normal noise.

® Alternative ways of estimating the decoder model.

® Conditioning and guidance.
® Same as before, but conditioning on prompts.

® Can over-emphasize examples which fit a prompt.
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Takeaways for this part of class

® What transformers have achieved for language generation,
diffusion models have achieved for image generation.

® The basic idea is simple:
1. Add normal noise to images in a data-base.

2. Predict the de-noised image from the noisy one.
3. Do so in multiple rounds.

4. Then generate images by starting with pure noise.

e Conditioning predictions on (encodings of) text labels
yields image generation based on text prompts.
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Variational autoencoders

Diffusion models

Conditioning and guidance



Setup

® i.i.d. observables: x (e.g., images).

Latent variables: z.

Goal: Model the distribution p(x).

Decoder model: pg(x|z).

Encoder model: g4 (z|x).

® Marginal (prior) for z: p(z).
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The decoder as a generative model

® Given 0, it is easy to sample from p(x):
1. Obtain a draw of z ~ p(z).

2. Then obtain a draw from pg(x|z).

® Maximum likelihood estimation:
Given the sample of observed x;, find 6 to maximize

zi:logpg (xi) = zi:log (/Zpe(xilz)p(z)dz> )

® Problem: The integral is too hard to compute for interesting models
(e.g., neural networks).
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Decomposing the likelihood

® By definition of conditional probabilities, for arbitrary z:

o (poldop() ae()
log Py (x) = log ( Pzl <z|x>>

() (35

® Taking expectations of this over g4 (z|x), for arbitrary ¢, gives:

logpo(¥) = = E.yyia [log (m(x!z)p(z))] + By |:log <f1¢ (z]x) ﬂ

q9(2]x) Po(2]x)

L(¢,0;x) (Evidence lower bound) Dir(q4(2|%)||pe(zlx)) (KL divergence)
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Estimating the model by maximizing the ELBO

® Rearranging the likelihood decomposition:

L(¢,0;x) = log pe(x) — Dk1(qy (z|%)||pe (z]x))-

® Maximizing the ELBO L(¢,0;x) wrt 6 and ¢ is equivalent to simultaneously
1. Maximizing log pg(x).

2. Minimizing Di1(q¢(2[x)||pe (2[x)).
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How to maximize the ELBO
® We can decompose the ELBO further:

Po (XIZ)p(Z))}

qo(z|x)

=E gy logpo(xl2)] = Evyy(ay) [log (q;((zzyf)ﬂ

Dk1(q¢ (z|x)||p(z))  (Prior matching term)

L(9,0;x) = E. g, (z[x) [10% (

(Reconstruction term)

® The expectations can easily be approximated using simulation.

® Suppose gy(z|x) = N(ty(x),Z¢ (x)).

e A differentiable estimate of the expectations averages over draws of
zj = Ho(x) +Zo(x)* - &,

for fixed draws €; ~ N(0,1).
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Hierarchical autoencoders

e Straightforward generalization: Denote x¥ =x,
Hierarchy of multiple latent variables x',x?,...,xT.

® Encoder and decoder models for each layer:

g9 (¢ [¥) o |1,

e ELBO for this hierarchical model:

‘ pe(x"")
L(¢,0;x) = Exl:TN%(xl:T‘XO) [log (M
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Diffusion models

Simplification: gy is a known distribution g.

In particular:

X~ NG (L)1)

For a7y = H,T:1 o ~ 0, we get

X0 ~NWag-x°,(1—ar)-I)- =~ N(0,I).

Furthermore
XX ~N@@ O+ A,

for constants a’,b',c' that are easy to calculate.
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Estimating diffusion models

® | eading terms in ELBO for diffusion models are of the form
Ex’rvq(x‘\xo) [DKL (q(xt—l’xO’XI)Hpe(XI—IHXZ))]
® Recall g(x"'x",x') is a normal distribution.

® For such normal distributions with known variance, minimizing Dk is equivalent
to predicting the mean

EWN 0¥ =d -2+ ¥,

based on x'.
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Three equivalent prediction targets

® Goal: predict E[x¥ '|x°,x'] =a-x° +b" - ¥, based on x'.

® Three equivalent approaches:

1. Predict x° based on x'
Plug into a' -x° +b" - x'.

2. Predict & based on x/,
where ¥ = /& -2 +/1—0; - &.

3. Predict Vlog p(x') based on x'.
Recall Tweedie's formula:

EX°|X]=x+(1—-a) Vlogp(x').
® All three prediction targets can be predicted using neural networks.

e Approach 3 leads to an interpretation of denoising as gradient flow.
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Conditioning

Typically, in generative Al, the goal is not to learn p(x), but instead p(x|y).

Leading example: y is a text prompt, or LLM encoding thereof.

Immediate extension of our previous approach:
Learn conditional predictions of x'~! given ¥’ and y.

Works, but leads to generated x that might not be
“clear-cut” representations of y.
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Classifier guidance

® By Bayes' rule,

Vlog p(x'[y) = Vlog (’W) = Vlogp(x') + Vlog p(y[x').

® Can learn the score of the conditional model
by learning the score of the unconditional model, and a classifier.

® To generate more clear-cut examples, overweight the classifier in gradient flow:

Viogp(x') +7- Viog p(y|¥')

for y> 1.
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