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Outline

• Variational auto-encoders.
• Self-prediction with a “bottleneck.”

• Encoder and decoder models.

• Diffusion models.
• Special case of hierarchical autoencoders.

• Fix the encoder model: Just add normal noise.

• Alternative ways of estimating the decoder model.

• Conditioning and guidance.
• Same as before, but conditioning on prompts.

• Can over-emphasize examples which fit a prompt.
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Takeaways for this part of class

• What transformers have achieved for language generation,
diffusion models have achieved for image generation.

• The basic idea is simple:

1. Add normal noise to images in a data-base.

2. Predict the de-noised image from the noisy one.

3. Do so in multiple rounds.

4. Then generate images by starting with pure noise.

• Conditioning predictions on (encodings of) text labels
yields image generation based on text prompts.
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Setup

• i.i.d. observables: x (e.g., images).

• Latent variables: z.

• Goal: Model the distribution p(x).

• Decoder model: pθ (x|z).

• Encoder model: qφ (z|x).

• Marginal (prior) for z: p(z).
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The decoder as a generative model

• Given θ , it is easy to sample from p(x):
1. Obtain a draw of z ∼ p(z).

2. Then obtain a draw from pθ (x|z).

• Maximum likelihood estimation:
Given the sample of observed xi, find θ to maximize

∑
i

log pθ (xi) = ∑
i

log
(∫

z
pθ (xi|z)p(z)dz

)
.

• Problem: The integral is too hard to compute for interesting models
(e.g., neural networks).
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Decomposing the likelihood

• By definition of conditional probabilities, for arbitrary z:

log pθ (x) = log
(

pθ (x|z)p(z)
pθ (z|x)

·
qφ (z|x)
qφ (z|x)

)
= log

(
pθ (x|z)p(z)

qφ (z|x)

)
+ log

(
qφ (z|x)
pθ (z|x)

)
.

• Taking expectations of this over qφ (z|x), for arbitrary φ , gives:

log pθ (x) = = Ez∼qφ (z|x)

[
log

(
pθ (x|z)p(z)

qφ (z|x)

)]
︸ ︷︷ ︸

L(φ ,θ ;x) (Evidence lower bound)

+ Ez∼qφ (z|x)

[
log

(
qφ (z|x)
pθ (z|x)

)]
︸ ︷︷ ︸

DKL(qφ (z|x)||pθ (z|x)) (KL divergence)

5 / 14



Estimating the model by maximizing the ELBO

• Rearranging the likelihood decomposition:

L(φ ,θ ;x) = log pθ (x)−DKL(qφ (z|x)||pθ (z|x)).

• Maximizing the ELBO L(φ ,θ ;x) wrt θ and φ is equivalent to simultaneously

1. Maximizing log pθ (x).

2. Minimizing DKL(qφ (z|x)||pθ (z|x)).
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How to maximize the ELBO
• We can decompose the ELBO further:

L(φ ,θ ;x) = Ez∼qφ (z|x)

[
log

(
pθ (x|z)p(z)

qφ (z|x)

)]
= Ez∼qφ (z|x) [log pθ (x|z)]︸ ︷︷ ︸

(Reconstruction term)

− Ez∼qφ (z|x)

[
log

(
qφ (z|x)

p(z)

)]
︸ ︷︷ ︸

DKL(qφ (z|x)||p(z)) (Prior matching term)

.

• The expectations can easily be approximated using simulation.

• Suppose qφ (z|x) = N(µφ (x),Σφ (x)).

• A differentiable estimate of the expectations averages over draws of

z j = µφ (x)+Σφ (x)1/2 · ε j,

for fixed draws ε j ∼ N(0, I).
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Hierarchical autoencoders

• Straightforward generalization: Denote x0 = x,
Hierarchy of multiple latent variables x1,x2, . . . ,xT .

• Encoder and decoder models for each layer:

qφ (xt |xt−1) pθ (xt |xt+1).

• ELBO for this hierarchical model:

L(φ ,θ ;x) = Ex1:T∼qφ (x1:T |x0)

[
log

(
pθ (x0:T )

qφ (x1:T |x)

)]
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Diffusion models

• Simplification: qφ is a known distribution q.

• In particular:
xt |xt−1 ∼ N(

√
αt · xt−1,(1−αt) · I).

• For ᾱT = ∏
T
t=1 αt ≈ 0, we get

xT |x0 ∼ N(
√

ᾱT · x0,(1− ᾱT ) · I)· ≈ N(0, I).

• Furthermore
xt−1|x0,xt ∼ N(at · x0 +bt · xt ,ct · I),

for constants at ,bt ,ct that are easy to calculate.
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Estimating diffusion models

• Leading terms in ELBO for diffusion models are of the form

Ext∼q(xt |x0)

[
DKL

(
q(xt−1|x0,xt)||pθ (xt−1||xt)

)]
• Recall q(xt−1|x0,xt) is a normal distribution.

• For such normal distributions with known variance, minimizing DKL is equivalent
to predicting the mean

E[xt−1|x0,xt ] = at · x0 +bt · xt ,

based on xt .
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Three equivalent prediction targets

• Goal: predict E[xt−1|x0,xt ] = at · x0 +bt · xt , based on xt .

• Three equivalent approaches:

1. Predict x0 based on xt

Plug into at · x0 +bt · xt .

2. Predict εt based on xt ,
where xt =

√
ᾱt · x0 +

√
1− ᾱt · εt .

3. Predict ∇ log p(xt) based on xt .
Recall Tweedie’s formula:

E[x0|xt ] = xt +(1− ᾱt) ·∇ log p(xt).

• All three prediction targets can be predicted using neural networks.

• Approach 3 leads to an interpretation of denoising as gradient flow.
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Conditioning

• Typically, in generative AI, the goal is not to learn p(x), but instead p(x|y).

• Leading example: y is a text prompt, or LLM encoding thereof.

• Immediate extension of our previous approach:
Learn conditional predictions of xt−1 given xt and y.

• Works, but leads to generated x that might not be
“clear-cut” representations of y.
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Classifier guidance

• By Bayes’ rule,

∇ log p(xt |y) = ∇ log
(

p(xt) · p(y|xt)

p(y)

)
= ∇ log p(xt)+∇ log p(y|xt).

• Can learn the score of the conditional model
by learning the score of the unconditional model, and a classifier.

• To generate more clear-cut examples, overweight the classifier in gradient flow:

∇ log p(xt)+ γ ·∇ log p(y|xt)

for γ ≥ 1.

13 / 14



References

• https://en.wikipedia.org/wiki/Evidence_lower_bound

• Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv
preprint arXiv:2208.11970

• Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., and
Yang, M.-H. (2023). Diffusion models: A comprehensive survey of methods
and applications. ACM Computing Surveys, 56(4):1–39

14 / 14

https://en.wikipedia.org/wiki/Evidence_lower_bound

	Variational autoencoders
	Diffusion models
	Conditioning and guidance

