Foundations of machine learning Diffusion models and variational autoencoders

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025

Outline

- Variational auto-encoders.
 - Self-prediction with a "bottleneck."
 - Encoder and decoder models.
- Diffusion models.
 - Special case of hierarchical autoencoders.
 - Fix the encoder model: Just add normal noise.
 - Alternative ways of estimating the decoder model.
- Conditioning and guidance.
 - Same as before, but conditioning on prompts.
 - Can over-emphasize examples which fit a prompt.

Takeaways for this part of class

- What transformers have achieved for language generation, diffusion models have achieved for image generation.
- The basic idea is simple:
 - 1. Add normal noise to images in a data-base.
 - 2. Predict the de-noised image from the noisy one.
 - 3. Do so in multiple rounds.
 - 4. Then generate images by starting with pure noise.
- Conditioning predictions on (encodings of) text labels yields image generation based on text prompts.

Variational autoencoders

Diffusion models

Conditioning and guidance

Setup

- i.i.d. observables: x (e.g., images).
- Latent variables: z.
- Goal: Model the distribution p(x).
- Decoder model: $p_{\theta}(x|z)$.
- Encoder model: $q_{\phi}(z|x)$.
- Marginal (prior) for z: p(z).

The decoder as a generative model

- Given θ , it is easy to sample from p(x):
 - 1. Obtain a draw of $z \sim p(z)$.
 - 2. Then obtain a draw from $p_{\theta}(x|z)$.
- Maximum likelihood estimation: Given the sample of observed x_i , find θ to maximize

$$\sum_{i} \log p_{\theta}(x_{i}) = \sum_{i} \log \left(\int_{z} p_{\theta}(x_{i}|z) p(z) dz \right).$$

• Problem: The integral is too hard to compute for interesting models (e.g., neural networks).

Decomposing the likelihood

• By definition of conditional probabilities, for arbitrary z:

$$\begin{split} \log p_{\theta}(x) &= \log \left(\frac{p_{\theta}(x|z)p(z)}{p_{\theta}(z|x)} \cdot \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} \right) \\ &= \log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right) + \log \left(\frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right). \end{split}$$

• Taking expectations of this over $q_{\phi}(z|x)$, for arbitrary ϕ , gives:

$$\log p_{\theta}(x) = \underbrace{E_{z \sim q_{\phi}(z|x)} \left[\log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right) \right]}_{L(\phi,\theta;x) \quad \text{(Evidence lower bound)}} + \underbrace{E_{z \sim q_{\phi}(z|x)} \left[\log \left(\frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right) \right]}_{D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \quad \text{(KL divergence)}}$$

Estimating the model by maximizing the ELBO

• Rearranging the likelihood decomposition:

$$L(\phi, \theta; x) = \log p_{\theta}(x) - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)).$$

- Maximizing the ELBO $L(\phi, \theta; x)$ wrt θ and ϕ is equivalent to simultaneously
 - 1. Maximizing $\log p_{\theta}(x)$.
 - 2. Minimizing $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$.

How to maximize the ELBO

• We can decompose the ELBO further:

$$\begin{split} L(\phi,\theta;x) &= E_{z \sim q_{\phi}(z|x)} \left[\log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right) \right] \\ &= \underbrace{E_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right]}_{\text{(Reconstruction term)}} - \underbrace{E_{z \sim q_{\phi}(z|x)} \left[\log \left(\frac{q_{\phi}(z|x)}{p(z)} \right) \right]}_{D_{KL}(q_{\phi}(z|x)||p(z))} \text{ (Prior matching term)} \end{split}$$

- The expectations can easily be approximated using simulation.
- Suppose $q_{\phi}(z|x) = N(\mu_{\phi}(x), \Sigma_{\phi}(x))$.
- A differentiable estimate of the expectations averages over draws of

$$z_j = \mu_{\phi}(x) + \Sigma_{\phi}(x)^{1/2} \cdot \varepsilon_j,$$

for fixed draws $\varepsilon_j \sim N(0,I)$.

Variational autoencoders

Diffusion models

Conditioning and guidance

Hierarchical autoencoders

- Straightforward generalization: Denote $x^0 = x$, Hierarchy of multiple latent variables x^1, x^2, \dots, x^T .
- Encoder and decoder models for each layer:

$$q_{\phi}(x^t|x^{t-1}) \qquad p_{\theta}(x^t|x^{t+1}).$$

• ELBO for this hierarchical model:

$$L(\phi, \theta; x) = E_{x^{1:T} \sim q_{\phi}(x^{1:T}|x^{0})} \left[\log \left(\frac{p_{\theta}(x^{0:T})}{q_{\phi}(x^{1:T}|x)} \right) \right]$$

Diffusion models

- Simplification: q_{ϕ} is a *known* distribution q.
- In particular:

$$x^{t}|x^{t-1} \sim N(\sqrt{\alpha_{t}} \cdot x^{t-1}, (1-\alpha_{t}) \cdot I).$$

• For $\bar{\alpha}_T = \prod_{t=1}^T \alpha_t \approx 0$, we get

$$x^T | x^0 \sim N(\sqrt{\bar{\alpha}_T} \cdot x^0, (1 - \bar{\alpha}_T) \cdot I) \cdot \approx N(0, I).$$

Furthermore

$$x^{t-1}|x^0, x^t \sim N(a^t \cdot x^0 + b^t \cdot x^t, c^t \cdot I),$$

for constants a^t, b^t, c^t that are easy to calculate.

Estimating diffusion models

Leading terms in ELBO for diffusion models are of the form

$$E_{x^t \sim q(x^t|x^0)} \left[D_{KL} \left(q(x^{t-1}|x^0, x^t) || p_{\theta}(x^{t-1}||x^t) \right) \right]$$

- Recall $q(x^{t-1}|x^0,x^t)$ is a normal distribution.
- ullet For such normal distributions with known variance, minimizing D_{KL} is equivalent to predicting the mean

$$E[x^{t-1}|x^0, x^t] = a^t \cdot x^0 + b^t \cdot x^t,$$

based on x^t .

Three equivalent prediction targets

- Goal: predict $E[x^{t-1}|x^0, x^t] = a^t \cdot x^0 + b^t \cdot x^t$, based on x^t .
- Three equivalent approaches:
 - 1. Predict x^0 based on x^t Plug into $a^t \cdot x^0 + b^t \cdot x^t$.
 - 2. Predict ε_t based on x^t , where $x^t = \sqrt{\bar{\alpha}_t} \cdot x^0 + \sqrt{1 \bar{\alpha}_t} \cdot \varepsilon_t$.
 - 3. Predict $\nabla \log p(x^t)$ based on x^t . Recall Tweedie's formula:

$$E[x^0|x^t] = x^t + (1 - \bar{\alpha}_t) \cdot \nabla \log p(x^t).$$

- All three prediction targets can be predicted using neural networks.
- Approach 3 leads to an interpretation of denoising as gradient flow.

Variational autoencoders

Diffusion model

Conditioning and guidance

Conditioning

- Typically, in generative AI, the goal is not to learn p(x), but instead p(x|y).
- Leading example: y is a text prompt, or LLM encoding thereof.
- Immediate extension of our previous approach: Learn conditional predictions of x^{t-1} given x^t and y.
- Works, but leads to generated *x* that might not be "clear-cut" representations of *y*.

Classifier guidance

• By Bayes' rule,

$$\nabla \log p(x^t|y) = \nabla \log \left(\frac{p(x^t) \cdot p(y|x^t)}{p(y)} \right) = \nabla \log p(x^t) + \nabla \log p(y|x^t).$$

- Can learn the score of the conditional model by learning the score of the unconditional model, and a classifier.
- To generate more clear-cut examples, overweight the classifier in gradient flow:

$$\nabla \log p(x^t) + \gamma \cdot \nabla \log p(y|x^t)$$

for $\gamma \geq 1$.

References

- https://en.wikipedia.org/wiki/Evidence_lower_bound
- Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970
- Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., and Yang, M.-H. (2023). Diffusion models: A comprehensive survey of methods and applications. ACM Computing Surveys, 56(4):1–39