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Outline

® Supervised machine learning as a first stage estimator in econometrics.
® Two problems that arise using a plugin approach.
® Two solutions - orthogonalized scores and sample splitting.

® How to derive orthogonalized scores.

Examples.

Asymptotics.
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Takeaways for this part of class

® Supervised learning can be useful as a first-stage
in econometric estimation problems.

® But simple plug-in estimators are often poorly behaved.

® Well-behaved estimators can be constructed using
1. Orthogonal scores, and

2. Sample splitting and averaging.

® Examples:
1. Partial linear regression.

2. Average treatment effect und unconfoundedness.

3. Local average treatment effect under conditional instrument exogeneity.

2/20



Setup
@ Examples



Setup

® Many settings in econometrics:
® The object of interest is low-dimensional (or real-valued),

® but high-dimensional parameters are of intermediate relevance.

® General two stage structure:

1. The high-dimensional g¢ is given by the solution
to some supervised learning problem.

2. The low-dimensional parameter of interest 6y then solves
E[(P(Wa 90780)] =0.

e Can we estimate go using supervised machine learning, and plug it in?
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Plugin estimation

® Most obvious estimator of 6j:
1. First estimate gg using some supervised ML method.

2. Then plug in the estimate and solve for 8 in

E,[0(W;,0,8)] =0.

® This causes two problems, however:

1. Bias of ¢ might distort 6.

2. The statistical dependence of § and W; might distort 6.
°

Both of these issues might cause large biases.

® | et us consider some examples, before solving these problems.
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Example 1: Partially linear regression

® Model:
Y=D-6+go(X)+U, E[U|X,D] =0.

® Plugin estimator:
1. Estimate gg, using some supervised ML method.

2. Then solve E,[¢(W;,00,8)] =0, where E, is the sample average across observations
W;, and

® Thus

A

0=E, D}

-E,[D; - (Y; — g(X;))]
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Example 2: Average treatment effect

® Model:
Y =go(D,X)+U E[U|X,D]=0
6 = E[gO(laX) _gO(OaX)]

® Under unconfoundedness, 6 is the average treatment effect.

® Plugin estimator:
1. Estimate go, using some supervised ML method.

2. Then solve E,[¢(W;,00,8)] =0, where

¢(W,0,8) =g(1,X)—g(0,X) - 6.
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Example 3: Local average treatment effect
® Model:

Y

(2, X)+U, D=gl(z,X)+V, E[(U,V)X,Z]=0,
Elgo(1,X) — 8(0.X)]
E[gd(1,X) — g3(0,X)]

® Under conditional instrument exogeneity, exclusion restriction, 6y is the local
average treatment effect.

0 —

® Plugin estimator:
1. Estimate gg, using some supervised ML method.

2. Then solve E,[¢(W;,00,8)] =0, where

0(W.0,8) = &'(1,X) —g'(0,%) — (8°(1.X) —¢*(0.X) ) - 6.
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A

Approximating 6
® Telescope sum; Taylor approximation;
approximating sample averages by expectations:

0=E,[9(W;,6,8)] = E, [¢(W;,6,8) — ¢(W;, 6,0)]

+E, [0(W;,0,80) — ¢(Wi, 00,80)] + En [6(W, 60,80)]
= E [0;0(Wi, 00,80) - (& — 80)]
+E [99¢ (Wi, 60,80)] - (6 — 60) + E, [¢(Wi, 60, 80)] -

* Solving for 6 — 6y:

(6 — 89) ~ E [0g§ (Wi, 00,20)) " - [En[9(W:, 60,80)] +
+ E [0, (Wi, 60,80) - (€ — 80)]]
® We can further decompose the last term, which is the cause of bias:
E [dy¢ (Wi, 60,80) - (§ —80)]
=E [0;0 (Wi, 60,80)] - (E[8] — 80) +E [dg¢ (Wi, 60,80) - (§ — E[8])]
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Practice problem

Write out this decomposition for average treatment effect estimation and the plugin
estimator.

1. Recall what is ¢ and g here.
2. What is dg¢, what is dg¢?

3. What do we get for the red and magenta terms?
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Problem 1: Bias in the first stage

® As we discussed previously, ML estimators use regularization, and therefore are
biased: E[g] # go.

® Suppose however that we had a score function which satisfies “Neyman
orthogonality:”
E [ag(b(Wi; 90:80)] =0.
® Then

E[9g¢ (Wi, 60,80)] - (E[§] —g0) =0.

= Bias of ¢ does not matter to first order.
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Problem 2: Statistical dependence of first stage and data

In general, W; and g are not statistically independent,
and g has non-negligible variance.

Therefore E [d, ¢ (W;,600,80) - (§ —E[8])] #0.

Suppose however we used sample splitting:
1. Estimate g on one part of the data.

2. Average ¢(W;,0,8) over the remaining data.

Then this term automatically vanishes!
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Debiased Machine Learning
Combining these two ideas: (Definition 3.2 in the paper.)
1. Start with an estimation problem of the form E[¢ (W, 6p,g0)] = 0.

2. Derive an orthogonal Neyman score y, which satisfies

E[y(W,60,m0)]
E [0y (Wi, 60,M0)]

We will discuss next how to do this.

=0,
=0

3. Split the sample into K subsamples I.
Estimate f); based on I. Denote E, ; the sample average over I;.

4. Estimate 0 by solving

k
Z En,k [W<W7 0, ﬁk)] =0.
k=1
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How to derive orthogonal scores

® Suppose that

(60,B0) = argemax E[L(W,0,B)].

)

® 3 takes the role of g here.
We focus on the parametric case for ease of exposition.

® Two approaches to deriving an orthogonal score:
1. Construction from moment functions.

2. Concentrating out.
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Construction from moment functions

® Suppose that
(60, Bo) = argmax E[L(W,6,B)],
67

and thus
E[aGL(W7 607ﬁ0)] = 0’ E[aﬁL(Wv 907ﬁ0)] =0.
® Define
W(Wa 0, TI) = 89L(W7 9)ﬁ) —H- aﬁL(Wa 67B>7
where n = (u, ), and Ly solves
aﬁE[agL(W, 607ﬁ0)] —Ho- 8BE[8[3L(W7 907ﬁ0)] =0.
® Then

)

E[y(W,60,1m0)] =0
E [dny(W;,60,Mm0)] = 0.
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Construction by concentrating out

® Suppose again that
(907ﬁ0) = argnll;ax E[L(Wv Gaﬁ)]
0,

* Define
B(6) = argmax E[L(W,6,B)],
y(W,0,n) = do (L(W,0,5(6)))
= JgL(W,0,B)+ B (0) - IpL(W,0.B),
where = (B,9s(0)).
e Then, again

E[W(W7 607 770)] = 07
E [arl W(VVH 607 T]O)] =0.
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Example 1: Partially linear regression

Recall the model

Y=D-6y+g(X)+U, E[U|X,D] =0.

Define
mo(X) = E[D|X].

® Then
y(W,0,n)=( —-D-6—-g(X)) (D—-m(X))

satisfies the orthogonality condition.

In the first stage, we need to estimate go(X) and m(X).
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Example 2: Average treatment effect

® Recall the model

Y =go(D,X)+U E[U|X,D]=0
6o = E[gO(laX) _gO(OaX)]'

® Define
my(X) = E[D|X].

® Then

YW,0,m) = (2(1,X) —2(0.X)) + (24— (500)
)g(0.X

_ (Dg(LX) _ (1-D)g(0,
m(X) T—m(X)

satisfies the orthogonality condition.

® This is the famous “doubly robust” estimation approach.
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Asymptotics for debiased ML estimators

Theorem 3.3.

® Assume a number of regularity conditions.

® Consider a Debiased Machine Learning estimator.

® Then
\/ﬁ(é - 9) ~A N(O’Gz)a
® where
o> =J"" - Var(y(W,60,1m0))-J ",
for

J = aGE[W(W7 607 nO)]
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Intuition of proof

® Recall our earlier expansion

(6 — 680) ~ E [0gw(W;,00,1m0)) " - [En [Ww (Wi, 80,m0)] +
+E [0q w(W;, 00,M0) - (71 —10)]]

® Using the Debiased Machine Learning approach, we have killed the blue term.

® The other terms give asymptotic normality and the variance by standard
arguments.
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