
Conformal prediction

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2025



Outline

• A general procedure for constructing confidence sets for predictions.

• Proof of validity under minimal assumptions.
• Special cases: Constructions using

• Classification.
• Confidence bands.
• Quantile regressions.

• Unconditional and conditional coverage.
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Takeaways for this part of class

• Any method for point prediction can be converted into a method for uncertainty
quantification.

• Size control only relies on exchangeability of test observations with calibration
data.

• Better predictors yield tighter confidence sets.

• Important caveat: Coverage is unconditional. Conditional coverage requires
modification.
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General procedure

• Take some scoring function s(x,y).
• Fix a calibration sample of observations i = 1, . . . ,n, and let

si = s(Xi,Yi).

• Let α̃ = 1− ⌈(n+1)(1−α)⌉
n (rounded down significance level).

• Let q̂ be the 1−α quantile of {s1, . . . ,sn}.
• For a new observation Xtest , let

C(Xtest) = {y : s(Xtest ,y)≤ q̂} .
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Coverage

• Theorem:
• Suppose {(X1,Y1), . . . ,(Xn,Yn),(Xtest ,Ytest)} are i.i.d.
• Then

P(Ytest ∈ C(Xtest))≥ 1−α.

• Proof:
• Let s(i) be the ith order statistic of {s1, . . . ,sn}, and stest = s(Xtest ,Ytest).
• By exchangeability (i.i.d.), P(stest ≤ s(i)) =

i
n+1 .

• Therefore

P(stest ≤ s⌈(n+1)(1−α)⌉) =
⌈(n+1)(1−α)⌉

n+1
≥ 1−α.
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Scores for classification

• Suppose P(Y = y|X = x)≈ f̂ (y|x).
• (E.g. multinomial logit, or neural net classifier).

• One possible score:
s(x,y) = 1− f̂ (y|x).

• Problem with this score: Small C when uncertainty is high.

• Better: Let j(y,x) be the rank of f̂ (y|x) across y. Define

s(x,y) = ∑
y′

1( j(y|x)≥ j(y′|x)) · f̂ (y|x)
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Score from point prediction

• Let f̂ (x) be a point-predictor of y given x.
• E.g. Lasso, random forest, neural net, ...

• Define
s(x,y) = |y− f̂ (x)|.

• Yields confidence band of constant width.
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Score from uncertainty estimate

• Taking into account conditional uncertainty: Let additionally σ̂(x) be a predictor
of |y− f̂ (x)|. E.g. estimate of conditional standard deviation.

• Define

s(x,y) =
|y− f̂ (x)|

σ̂(x)
.

• Yields confidence bands with width proportional to σ̂(x).
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Score from quantile regressions

• Fit two separate models for conditional quantiles t α

2
(x) and t1− α

2
(x) of Y given X .

• Loss function for estimation of qth quantile tq(x):

l(t,y) = q ·max(t − y,0)+(1−q) ·max(y− t,0).

• Define
s(x,y) = max

(
t α

2
(x)− y,y− t1− α

2
(x)

)
.

• Resulting confidence band:

C(x) =
[
t α

2
(x)− q̂, t1− α

2
(x)+ q̂

]
.
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Unconditional versus conditional coverage

• The theorem guarantees unconditional coverage: P(Ytest ∈ C(Xtest))≥ 1−α.

• It does not guarantee conditional coverage: P(Ytest ∈ C(Xtest)|Xtest)≥ 1−α.

• We can modify conformal prediction to hold conditional on groups:
• Let g = g(x) ∈ {0, . . . ,G}.
• Use conditional empirical quantiles q̂g for construction of C(X).
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Full conformal prediction

• Having a calibration sample not used for estimation is wasteful.

• Full conformal prediction avoids this.

• Computationally demanding: Requires re-fitting model for every possible value y.
• Size control again holds under exchangeability.
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Full conformal prediction, continued

• For each possible outcome y for a test observation:
• Fit a model f̂ y on training data and the hypothetical observation (Xtest ,y).
• Calculate the quantile q̂y of the scores s(Xi,Yi, f̂ y).

• Define
C(Xtest) =

{
y : s(Xtest ,y, f̂ y)≤ q̂y} .

• This uses the same data for estimation and calibration.
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