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Outline

A general procedure for constructing confidence sets for predictions.

Proof of validity under minimal assumptions.

Special cases: Constructions using
® (Classification.
® Confidence bands.
® Quantile regressions.

Unconditional and conditional coverage.
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Takeaways for this part of class

® Any method for point prediction can be converted into a method for uncertainty
quantification.

® Size control only relies on exchangeability of test observations with calibration
data.

® Better predictors yield tighter confidence sets.

® |mportant caveat: Coverage is unconditional. Conditional coverage requires
modification.
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General procedure

Take some scoring function s(x,y).

Fix a calibration sample of observations i =1,...,n, and let

S = S(Xi7Yi)‘

Let &t =1— [(n+1)(1-0a)]

. (rounded down significance level).

Let ¢ be the 1 — o quantile of {sy,...,s,}.

For a new observation X, let

G(Xtest) = {)’1 S(Xtestay) < ‘?} .
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Coverage

®* Theorem:
® Suppose {(X1,Y1),..., (X, Yn), Xiest, Yiesr) } are i.id.
® Then
P(Yiest € C(Xpe)) > 1— 0.
® Proof:

® Let s5(; be the ith order statistic of {s1,...,5,}, and sresr = 5(Xtesr, Yrest)-
® By exchangeability (i.i.d.), P(stesr < 5(;)) = J
® Therefore

Lt
n+1"

n+1)(1—«a
Plstest < Stnin)(1-a))) = % zl-a
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Scores for classification

Suppose P(Y = y|X = x) ~ f(y|x).
(E.g. multinomial logit, or neural net classifier).

One possible score:
s(x,y) =1—=f(ylx).

Problem with this score: Small € when uncertainty is high.

e Better: Let j(y,x) be the rank of f(y|x) across y. Define

s(x,y) = Zl(j(y\x) > j(/|x)) - f(ylx)

y
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Score from point prediction

Let f(x) be a point-predictor of y given x.
® E.g. Lasso, random forest, neural net, ...

Define

s(x,y) =y = f(x)].

Yields confidence band of constant width.

6/12



Score from uncertainty estimate

e Taking into account conditional uncertainty: Let additionally 6(x) be a predictor
of [y— f(x)|. E.g. estimate of conditional standard deviation.

® Define
ly=F)| )|

s(ey) = "% o0

® Yields confidence bands with width proportional to &(x).
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Score from quantile regressions

Fit two separate models for conditional quantiles 7« (x) and #; _a(x) of ¥ given X.

Loss function for estimation of gth quantile 7,(x):

I(t,y) = q-max(t —y,0) + (1 —g) -max(y —¢,0).

Define
s(.y) = max (1g (v) =y.y—11_¢(¥)) .

Resulting confidence band:
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Unconditional versus conditional coverage

® The theorem guarantees unconditional coverage: P(Yies € C(Xiesr)) > 1— 0.

® |t does not guarantee conditional coverage: P(Yiesr € C(Xiest)|Xrest) > 1 — .
® We can modify conformal prediction to hold conditional on groups:

® Let g=g(x) €{0,...,G}.

® Use conditional empirical quantiles ¢ for construction of C(X).
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Full conformal prediction

® Having a calibration sample not used for estimation is wasteful.

Full conformal prediction avoids this.

Computationally demanding: Requires re-fitting model for every possible value y.

Size control again holds under exchangeability.

10/12



Full conformal prediction, continued

® For each possible outcome y for a test observation:

* Fit a model f2 on training data and the hypothetical observation (X;.s,y).
® Calculate the quantile §* of the scores s(X;,Y;, f7).

® Define
G(Xtest) = {y: S(Xtestvyvﬁ) S éy} .

® This uses the same data for estimation and calibration.
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