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Outline

• Thus far: “Supervised machine learning” – data are given.
Next: “Active learning” – experimentation.

• Setup: The multi-armed bandit problem.
Adaptive experiment with exploration / exploitation trade-off.

• Two popular approximate algorithms:

1. Thompson sampling

2. Upper Confidence Bound algorithm

• Characterizing regret – fixed parameter asymptotics, local-to-zero asymptotics.

• Characterizing an exact solution: Gittins Index.

• Extension to settings with covariates (contextual bandits).
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Takeaways for this part of class
• When experimental units arrive over time, and we can adapt our treatment
choices, we can learn optimal treatment quickly.

• Treatment choice: Trade-off between
1. choosing good treatments now (exploitation),

2. and learning for future treatment choices (exploration).

• Optimal solutions are hard, but good heuristics are available.

• We will derive a bound on the regret of one heuristic.
• Bounding the number of times a sub-optimal treatment is chosen,

• using large deviations bounds (cf. testing!).

• Worst case regret occurs for intermediate effect sizes that are of order 1/
√

T .

• We will also derive a characterization of the optimal solution in the
infinite-horizon case. This relies on a separate index for each arm.
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The multi-armed bandit
Setup

• Treatments Dt ∈ 1, . . . ,k

• Experimental units come in sequentially over time.
One unit per time period t = 1,2, . . .

• Potential outcomes: i.i.d. over time, Yt = Y Dt
t ,

Y d
t ∼ Fd E[Y d

t ] = θ
d

• Treatment assignment can depend on past treatments and outcomes,

Dt+1 = dt(D1, . . . ,Dt ,Y1, . . . ,Yt).
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The multi-armed bandit
Setup continued

• Optimal treatment:

d∗ = argmax
d

θ
d

θ
∗ = max

d
θ

d = θ
d∗

• Expected regret for treatment d:

∆
d = E

[
Y d∗ −Y d

]
= θ

d∗ −θ
d .

• Finite horizon objective: Average outcome,

UT = 1
T ∑

1≤t≤T
Yt .

• Infinite horizon objective: Discounted average outcome,

U∞ = ∑
t≥1

β
tYt

4 / 28



The multi-armed bandit
Expectations of objectives

• Expected finite horizon objective:

E[UT ] = E

[
1
T ∑

1≤t≤T
θ

Dt

]
• Expected infinite horizon objective:

E[U∞] = E

[
∑
t≥1

β
t
θ

Dt

]
• Expected finite horizon regret:
Compare to always assigning optimal treatment d∗.

RT = E

[
1
T ∑

1≤t≤T

(
Y d∗

t −Yt

)]
= E

[
1
T ∑

1≤t≤T
∆

Dt

]
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Practice problem

• Show that these equalities hold.

• Interpret these objectives.

• Relate them to our decision theory terminology.
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Two popular algorithms
Upper Confidence Bound (UCB) algorithm

• Define

Ȳ d
t = 1

T d
t

∑
1≤s≤t

1(Ds = d) ·Ys,

T d
t = ∑

1≤s≤t
1(Ds = d)

Bd
t = B(T d

t ).

• B(·) is a decreasing function, giving the width of the “confidence interval.” We
will specify this function later.

• At time t +1, choose
Dt+1 = argmax

d
Ȳ d

t +Bd
t .

• “Optimism in the face of uncertainty.”
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Two popular algorithms
Thompson sampling

• Start with a Bayesian prior for θ .

• Assign each treatment with probability equal to the posterior probability that it is
optimal.

• Put differently, obtain one draw θ̂ t+1 from the posterior given
(D1, . . . ,Dt ,Y1, . . . ,Yt), and choose

Dt+1 = argmax
d

θ̂
d
t+1.

• Easily extendable to more complicated dynamic decision problems, complicated
priors, etc.!
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Two popular algorithms
Thompson sampling - the binomial case

• Assume that Y ∈ {0,1}, Y d
t ∼ Ber(θ d).

• Start with a uniform prior for θ on [0,1]k.

• Then the posterior for θ d at time t +1 is a Beta distribution with parameters

α
d
t = 1+T d

t · Ȳ d
t ,

β
d
t = 1+T d

t · (1− Ȳ d
t ).

• Thus
Dt = argmax

d
θ̂t .

where
θ̂

d
t ∼ Beta(αd

t ,β
d
t )

is a random draw from the posterior.
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Regret bounds
• Back to the general case.

• Recall expected finite horizon regret,

RT = E

[
1
T ∑

1≤t≤T

(
Y d∗

t −Yt

)]
= E

[
1
T ∑

1≤t≤T
∆

Dt

]
.

• Thus,
T ·RT = ∑

d
E[T d

T ] ·∆d .

• Good algorithms will have E[T d
T ] small when ∆d > 0.

• We will next derive upper bounds on E[T d
T ] for the UCB algorithm.

• We will then state that for large T similar upper bounds hold for Thompson
sampling.

• There is also a lower bound on regret across all possible algorithms which is the
same, up to a constant.
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Reminder: Large deviations inequality
• Let ȲT = 1

T ∑1≤t≤T Yt for i.i.d. Yt .

• Suppose that
E[exp(λ · (Y −E[Y ]))]≤ exp(ψ(λ )).

• Define the Legendre-transformation of ψ as

ψ
∗(ε) = sup

λ≥0
[λ · ε −ψ(λ )] .

• For distributions bounded by [0,1]:
ψ(λ ) = λ 2/8 and ψ∗(ε) = 2ε2.

• For normal distributions:
ψ(λ ) = λ 2σ2/2 and ψ∗(ε) = ε2/(2σ2).

• Then
P(ȲT −E[Y ]> ε)≤ exp(−T ·ψ∗(ε)).
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Applied to the Bandit setting
• Suppose that for all d

E[exp(λ · (Y d −θ
d))]≤ exp(ψ(λ ))

E[exp(−λ · (Y d −θ
d))]≤ exp(ψ(λ )).

• Recall / define

Ȳ d
t = 1

T d
t

∑
1≤s≤t

1(Ds = d) ·Ys, Bd
t = (ψ∗)−1

(
α log(t)

T d
t

)
.

• Then we get

P(Ȳ d
t −θ

d > Bd
t )≤ exp(−T d

t ·ψ∗(Bd
t ))

= exp(−α log(t)) = t−α

P(Ȳ d
t −θ

d <−Bd
t )≤ t−α .
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Why this choice of B(·)?
• A smaller B(·) is better for exploitation.

• A larger B(·) is better for exploration.

• Special cases:
• Distributions bounded by [0,1]:

Bd
t =

√
α log(t)

2T d
t

.

• Normal distributions:

Bd
t =

√
2σ2 α log(t)

T d
t

.

• The α log(t) term ensures that coverage goes to 1, but slow enough to not waste
too much in terms of exploitation.
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When d is chosen by the UCB algorithm
• By definition of UCB, at least one of these three events has to hold when d is

chosen at time t +1:

Ȳ d∗
t +Bd∗

t ≤ θ
∗ (1)

Ȳ d
t −Bd

t > θ
d (2)

2Bd
t > ∆

d . (3)

• 1 and 2 have low probability. By previous slide,

P
(

Ȳ d∗
t +Bd∗

t ≤ θ
∗
)
≤ t−α , P

(
Ȳ d

t −Bd
t > θ

d
)
≤ t−α .

• 3 only happens when T d
t is small. By definition of Bd

t , 3 happens iff

T d
t <

α log(t)
ψ∗(∆d/2)

.
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Practice problem

Show that at least one of the statements 1, 2, or 3 has to be true whenever Dt+1 = d,
for the UCB algorithm.
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Bounding E[T d
t ]

• Let

T̃ d
T =

⌊
α log(T )
ψ∗(∆d/2)

⌋
.

• Forcing the algorithm to pick d the first T̃ d
T periods

can only increase T d
T .

• We can collect our results to get

E[T d
T ] = ∑

1≤t≤T
1(Dt = d)≤ T̃ d

T + ∑
T̃ d

T <t≤T

E[1(Dt = d)]

≤ T̃ d
T + ∑

T̃ d
T <t≤T

E[1((1) or (2) is true at t)]

≤ T̃ d
T + ∑

T̃ d
T <t≤T

E[1((1)is true at t)]+E[1((2) is true at t)]

≤ T̃ d
T + ∑

T̃ d
T <t≤T

2t−α+1 ≤ T̃ d
T +

α

α −2
.
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Upper bound on expected regret for UCB

• We thus get:

E[T d
T ]≤

α log(T )
ψ∗(∆d/2)

+
α

α −2
,

RT ≤ 1
T ∑

d

(
α log(T )
ψ∗(∆d/2)

+
α

α −2

)
·∆d .

• Expected regret (difference to optimal policy) goes to 0 at a rate of O(log(T )/T )
– pretty fast!

• While the cost of “getting treatment wrong” is ∆d , the difficulty of figuring out
the right treatment is of order 1/ψ∗(∆d/2). Typically, this is of order (1/∆d)2.
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Related bounds - rate optimality

• Lower bound: Consider the Bandit problem with binary outcomes and any
algorithm such that E[T d

t ] = o(ta) for all a > 0. Then

liminf
t→∞

T
log(T ) R̄T ≥ ∑

d

∆d

kl(θ d ,θ ∗)
,

where kl(p,q) = p · log(p/q)+(1− p) · log((1− p)/(1−q)).

• Upper bound for Thompson sampling: In the binary outcome setting,
Thompson sampling achieves this bound, i.e.,

liminf
t→∞

T
log(T ) R̄T = ∑

d

∆d

kl(θ d ,θ ∗)
.
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Local-to-zero asymptotics

• The regret rate we just derived holds θ constant, as T → ∞.

• This provides a good characterization in the “high-powered” case,
where it is easy to detect the best treatment quickly.

• What about the low-powered case?

• Here is a heuristic calculation, for two arms, normal outcomes, variance 1:
1. The probability of correctly identifying the best arm,

after T/2 observations on each arm, is Φ
(
2
√

T ∆
)
.

2. The regret if we get the arm wrong equals ∆.

3. Thus the expected average regret is on the order of ∆ ·Φ
(
−2

√
T ∆

)
.

4. This vanishes for ∆ → 0 and for ∆ → ∞, and peaks in between, for ∆ = O(1/
√

T ),
yielding a worst-case average regret of order 1/

√
T .

(Not log(T )/T , as in the fixed parameter case!)
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Limiting regret of two-arm Thompson sampling

From Wager and Xu (2021).
Darker hues indicate a higher prior variance.

20 / 28



Formalizing local-to-zero asymptotics

• Consider a set of sequential experiments, indexed by their sample size T .

• Suppose θ d = θ d
1 /

√
T , and σ2d = Var(Y d) is the same for all T .

• Denote

Ỹ d
t =

1√
T

t

∑
s=1

1(Ds = d) ·Ys

T̃ d
t =

1
T

t

∑
s=1

1(Ds = d).

• Assume that the assignment probability for treatment d, pd
t , is given by a function

pd
t = ψ

d(Ỹt , T̃t)

• This covers, for instance, Thompson sampling for normal outcomes.
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Practice problem

Suppose that Y d
t ∼ N(θ d ,σd).

• What is the distribution of the stochastic process 1√
T ∑

t
s=1Y d

s ?

What is the limit of this stochastic process?

• Given Ỹ d
t , what is the expectation of T̃ d

t+1 − T̃ d
t ?

• Given (T̃ d
t ,Ỹ

d
t )

k
d=1, what is the expectation and variance of Ỹ d

t+1 − Ỹ d
t ?

Practice problem

Write the expected average regret RT as a function of (T̃ d
T )

k
d=1.
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A stochastic differential equation

Theorem 1 in the paper:
Under Assumption 1, the stochastic process given by (Ỹ d

t , T̃
d

t )
k
d=1

(with the range of t normalized to [0,1])
converges to the solution of the stochastic differential equations

dT̃ d
t = ψ

d(T̃ d
t ,Ỹ

d
t )dt,

dỸ d
t = ψ

d(T̃ d
t ,Ỹ

d
t ) ·θ ddt +

√
ψd(T̃ d

t ,Ỹ d
t )σ

ddBd
t ,

where Bd
t is a standard Brownian motion.
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Gittins index
Setup

• Consider now the discounted infinite-horizon objective, E[U∞] = E
[
∑t≥1 β tθ Dt

]
,

averaged over independent (!) priors across the components of θ .

• We will characterize the optimal strategy for maximizing this objective.

• To do so consider the following, simpler decision problem:
• You can only assign treatment d.

• You have to pay a charge of γd each period in order to continue playing.

• You may stop at any time, then the game ends.

• Define γd
t as the charge which would make you indifferent between playing or not,

given the period t posterior.
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Gittins index
Formal definition

• Denote by πt the posterior in period t, by τ(·) an arbitrary stopping rule.

• Define

γ
d
t = sup

{
γ : sup

τ(·)
Eπt

[
∑

1≤s≤τ

β
s
(

θ
d − γ

)]
≥ 0

}

= sup
τ(·)

Eπt

[
∑1≤s≤τ β sθ d

]
Eπt

[
∑1≤s≤τ β s

]
• Gittins and Jones (1974) prove: The optimal policy in the bandit problem always
chooses

Dt = argmax
d

γ
d
t .
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Heuristic proof (sketch)

• Imagine a per-period charge for each treatment is set initially equal to γd
1 .

• Start playing the arm with the highest charge, continue until it is optimal to stop.

• At that point, the charge is reduced to γd
t .

• Repeat.

• This is the optimal policy, since:

1. It maximizes the amount of charges paid.

2. Total expected benefits are equal to total expected charges.

3. There is no other policy that would achieve expected benefits bigger than expected
charges.
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Contextual bandits
• A more general bandit problem:

• For each unit (period), we observe covariates Xt .

• Treatment may condition on Xt .

• Outcomes are drawn from a distribution Fx,d , with mean θ x,d .

• In this setting Gittins’ theorem fails when the prior distribution of θ x,d is not
independent across x or across d.

• But Thompson sampling is easily generalized.
For instance to a hierarchical Bayes model:

Y d |X = x,θ ,α,β ∼ Ber(θ x,d)

θ
x,d |α,β ∼ Beta(αd ,β d)

(αd ,β d)∼ π.

• This model updates the prior for θ x,d not only based on observations with
D = d,X = x, but also based on observations with D = d & different values for X .
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