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Outline

• The online learning problem:
Sequential prediction.

• The adversarial framework:
Regret guarantees for all possible sequences of outcomes.
No sampling process is assumed.

• General theory for the case of convex action spaces (e.g. probabilistic
forecasts).
Potentials as a method for proving adversarial regret bounds.

• A very versatile algorithm: Thompson sampling.
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Takeaways for this part of class
• Online learning is the most basic sequential decision problem:

The observable history does not depend on actions.

• We can have performance guarantees
without any assumptions about the data generating process.

• To do so, our algorithms need to perform well
whenever there is a “competitor” that performs well.

• How to achieve this?
Make predictions similar to those of successful competitors.

• Thompson sampling choses actions based on the posterior probability that
they are optimal. This principle is successful in a wide variety of settings.

• Worst case sequences delay learning as long as possible.
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Setup
• Sequential predictions at times t= 1,2, . . .

• Outcomes: Yt ∈ Y.

• Predictions: Ŷ ∈ Y.

• Experts h ∈H, delivering predictions

Ŷh,t ∈ Y.

(∼ hypotheses / predictors).

• Any predictive features Xt are left implicit in the expert predictions.

• We assume (for today’s discussion)
1. H is finite,

2. Y is a convex subset of a vector space.
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Loss and regret
• We want to make a prediction Ŷt, using the expert predictions Ŷh,t,

• having observed St−1 = (Y1, . . . ,Yt−1).

• Loss at time t: L(Ŷt,Yt).

• Regret at time t relative to h:

rh,t = L(Ŷt,Yt)−L(Ŷh,t,Yt).

• Cumulative regret at time t relative to h:

Rh,t =
t

∑
s=1

rh,s.

• Cumulative regret relative to H:

RH,t =max
h∈H

Rh,t.
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Successful learning

• Our goal: Find learning algorithms delivering Ŷt

• such that average cumulative regret vanishes

• for all possible realizations of St = (Y1, . . . ,Yt):

sup
St

1
t
RH,t → 0.

• No probability is involved,
this is the worst case over all possible realizations of outcomes!!

• How could that even be possible?!?
The past carries no information about the future?!?!
There is no stability at all over time?!?!?!
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A chaotic, evil world
• No assumption is made about how the outcomes Yt are generated.

• We are interested in worst case behavior over all possible sequences Y1,Y2, . . .

Liu Cixin, The Three Body Problem
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Weighted average predictors

• We will consider weighted average predictors of the form

Ŷt =
∑h∈Hwh,t−1 · Ŷh,t

∑h∈Hwh,t−1
,

• where the weights of each expert are increasing
in the cumulative regret relative to that expert

wh,t = φ
′(Rh,t),

• with φ nonnegative, convex, and increasing.

• This gives a larger weight to experts that performed well in the past.
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Convex loss functions
Lemma 2.1

• Suppose that the loss function is convex in Ŷt,

• and Ŷt is given by a weighted average predictor of this form.

• Then

sup
Yt

∑
h∈H

rh,t ·φ ′(Rh,t−1)≤ 0.

• Proof :
• By convexity of L, Jensen’s inequality, :

∑
h∈H

wh,t−1 ·L(Ŷt,Yt) = L(Ŷt,Yt)≤ ∑
h∈H

wh,t−1 ·L(Ŷh,t,Yt).

• Weights are proportional to φ ′(Rh,t−1).
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Potential function
• Use boldface for vectors, with components corresponding to h ∈H.

• Potential function (a proof device):

Φ(u) := ψ

(
∑
h∈H

φ(uh)

)
.

• With this notation

Ŷt =

〈
∇Φ(Rt−1), Ŷ t

〉
⟨∇Φ(Rt−1), 1⟩

• The lemma then can be rewritten as the Blackwell condition

sup
Yt

⟨rt,∇Φ(Rt−1)⟩ ≤ 0.

• Note that Rt = Rt−1+ rt.
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Illustrating the Blackwell condition
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Bounding the potential
Theorem 2.1.

• Suppose that Ŷt satisfies the Blackwell condition.

• Then, for all t,

Φ(Rt)≤ Φ(0)+
1
2

t

∑
s=1

C(rs)

• where

C(r) = sup
u

ψ
′

(
∑
h∈H

φ(uh)

)
∑
h∈H

φ
′′(uh)r2h .

• Proof :
• Second order Taylor expansion of Φ(Rt) = Φ(Rt−1+ rt) in rt.

• Bounding the first-order term using the Blackwell condition.

• Bounding the second-order term by the supremum.

• Telescope sum.
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Exponential weighting
• Special case: Exponential weights.

• Potential (with tuning parameter η):

φ(u) =
1
η
log

(
∑
h∈H

exp(η ·uh)

)
.

• Corresponding weights:

wh,t−1 =
exp
(
η ·Rh,t−1

)
∑h′∈H exp

(
η ·Rh′,t−1

) = exp
(
−η ·∑t−1

s=1L(Ŷh,t,Yt)
)

∑h′∈H exp
(
−η ·∑t−1

s=1L(Ŷh′,t,Yt)
) .

• These weights only depend on the loss of each expert,
but not on our prediction Ŷt.

• For quadratic error loss, this is Bayesian model averaging,
for normal likelihood with variance 2/η , uniform prior over experts.
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Bounding regret for exponential weighting

Corollary 2.2.
• Assume that L is convex in Ŷ and bounded by [0,1].

• Then, for all η and for all St = (Y1, . . . ,Yt),

RH,t(St)≤
log(|H|)

η
+

tη
2
.

• For η =
√

2 log(|H|)
t ,

RH,t(St)≤
√

2t log(|H|).
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Proof
• By assumption, φ(x) = exp(η ·x), ψ(x) = φ−1(x) = log(x)/η .

• For any estimator with weights based on a potential, and ψ(x) = φ−1(x),

max
h∈H

Rh,t = ψ

(
φ

(
max
h∈H

Rh,t

))
≤ ψ

(
∑
h∈H

φ
(
Rh,t
))

=Φ(Rt).

• Calculation yields C(rt)≤ η (using |rh,t| ≤ 1),
and Φ(0) = log(|H|)/η .

• The theorem implies

Φ(Rt)≤ Φ(0)+
1
2

t

∑
s=1

C(rs)

≤ log(|H|)
η

+ t
η

2
.
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Discussion

• We can do essentially as well as the best of our experts.

• No matter how the sequence Yt is generated!

• No stability or invariance in the world is assumed.

• A possible way to address the induction problem?

• We are guaranteed to do well if anyone can do well.

15 / 25



Is this good enough?

The man who has fed the chicken every day throughout its life at last
wrings its neck instead, showing that more refined views as to the unifor-
mity of nature would have been useful to the chicken.

Bertrand Russell, The Problems of Philosophy.

• Should our regret bound provide consolation to the chicken?
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Bit prediction
• The simplest special case of online learning.

• Binary outcomes and predictions, Yt, Ŷt ∈ {0,1}.

• Mis-classification error loss: L(Ŷt,Yt) = 1(Ŷt ̸= Yt).

• No predictors.

⇒ Cumulative regret at time t:

Rt = max
y∈{0,1}

(
t

∑
s=1

[
1(Ŷs ̸= Ys)−1(y ̸= Ys)

])
.

• Denote 1t = ∑
t
s=1Yt, 0t = t− 1t. Then

min
y∈{0,1}

(
t

∑
s=1

1(y ̸= Ys)

)
=min(0t,1t).
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A Bayesian model
• Consider the following model, which we will use for the construction of an

algorithm
but not for the evaluation of this algorithm!

• i.i.d. draws:
Yt ∼i.i.d. Ber(θ)

• Uniform prior:
θ ∼ U[0,1].

• Then the time t+ 1 posterior for θ is given by

θ |Y1, . . . ,Yt ∼ Beta(1+ 1t,1+0t).

• Posterior mean:
E [θ |Y1, . . . ,Yt−1] =

1+ 1t
2+ t

.
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Thompson sampling
• A very simple, general and successful approach

for solving online learning and active learning problems.

• Denote by St−1 the history (information) observed by the beginning of period t.
Let pt(y) be the posterior probability that y is the optimal action:

pt(y) = P

(
y = argmin

ỹ
E[L(ỹ,Yt)|θ ]

∣∣∣St−1

)
.

• Thompson sampling chooses Ŷt = y with probability pt(y).
The sampling probability is set equal to
the posterior probability that an action is optimal.

• Thompson sampling can be implemented by
1. Sampling one draw θ̂t from the posterior for θ .

2. Choosing Ŷt = argmin ỹ E[L(ỹ,Yt)|θ = θ̂t].
19 / 25



Expected regret for a given sequence

• For binary bit prediction:

argmin
ỹ

E[L(ỹ,Yt)|θ ] = 1(θ > 1
2)

and thus

pt(0) = P(θ < 1
2 |St−1) = FBeta(1+1t−1,1+0t−1)(

1
2).

pt(1) = 1−FBeta(1+1t−1,1+0t−1)(
1
2).

• Fix the sequence Y1, . . . ,YT and assume wlog that 1T > T/2> 0T .

• Consider two sequences (Yt) and (Y ′
t), which are the same,

except the order of Ys and Ys+1 is swapped in sequence (Y ′
t).
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Swapping
• Suppose wlog (Ys,Ys+1) = (0,1).

Let 1s = k, 0s = s−k.
• Then the difference in expected regret between the two sequences equals

R′
t−Rt =

[
P(Ŷ ′

s = 0)+P(Ŷ ′
s+1 = 1)

]
−
[
P(Ŷs = 1)+P(Ŷs+1 = 0)

]
=
[
FBeta(1+k,1+s−k)(

1
2 )+(1−FBeta(2+k,1+s−k)(

1
2 ))
]

−
[
(1−FBeta(1+k,1+s−k)(

1
2 ))+FBeta(1+k,2+s−k)(

1
2 ))
]

= 2FBeta(1+k,2+s−k)(
1
2 ))

−
[
FBeta(2+k,1+s−k)(

1
2 ))+FBeta(1+k,2+s−k)(

1
2 ))
]
.

• By the properties of the Beta distribution (Fact 2), we can rewrite this as

R′
t−Rt =

1
2s ·B(1+k,1+s−k)

·
[

1
1+k

− 1
1+s−k

]
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Swapping continued

• It follows that the difference R′
t−Rt is negative iff k > s/2.

(cf. Lemma 4 in the paper).

• In words: If there were more 1s than 0s thus far,
it is worse if the “unexpected” observation Ys = 0
comes before the “expected” Ys+1 = 1.

• We can use this observation to figure out the worst case sequence (Y1, . . . ,YT),
among all sequences with 1T = k > T/2.

• Theorem 5 in the paper does exactly that:
The worst-case sequences are exactly the sequences such that

1. The sequence ends with 2k−T 1s.

2. Before that, all pairs (Ys,Ys+1) (for s odd) are equal to either (0,1) or (1,0).
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Practice problem
• Consider any sequence with 1T = k that is not of this form.

• Show that for such a sequence there exists a swap which increases regret.
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Intuition and implications

• The algorithm tries to learn whether 1T > 0T , or the other way around.

• The worst case sequence delays learning as much as possible,
by alternating 0s and 1s.

• One can calculate / bound regret for such a worst-case sequence.
By Theorem 6 in the paper:

RT = O
(√

min(1T,0T)
)
= O(

√
T).
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