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Common framework
• Sequential decisions Dt at times t= 1,2, . . .:

Predictions/forecasts, treatment choices, moves in a game, ...

• Decision Dt can depend on the history of observed information up to time t− 1.

• Decisions result in a period-specific loss L(Dt,Yt),
which depends on some variable/vector Yt.

• The goal is to minimize cumulative loss

∑
t
L(Dt,Yt).

• This is often evaluated in terms of regret relative to some optimal decision D∗:

∑
t
[L(Dt,Yt)−L(D∗,Yt)]
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Observability

How to evaluate algorithms



What is observable?
1. Online learning (e.g. forecasting):

• Observability does not depend on choices ⇒ no motive to experiment/explore!

• Yt are observed for past periods t.

⇒ Counterfactual loss L(d,Yt) is known for all values of d.

• Loss is often given by a function of the prediction error, e.g. L(Dt,Yt) = (Dt−Yt)
2.

2. Multi-armed bandits (e.g. treatment assignment):
• Observability does depend on choices ⇒ there is a motive to experiment/explore!

Tradeoff with the motive to “exploit” (do well now).

• C.f. causal inference / potential outcomes:
D ∈ {1, . . . ,k}, Y = (Y1, . . . ,Yk). We observe only YD.

⇒ Loss is only observed for the realized choice Dt,
but not for any counter-factual choice d ̸= Dt.

• Loss is often equal to (minus) realized outcomes, i.e., L(Dt,Yt) =−YDt
t .
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What is observable? - continued

3. Online convex optimization:
• Like mulit-armed bandits for convex action spaces and loss functions,

but additionally we observe the gradient ∇t of loss.

• Online learning and bandits can be reduced to online convex optimization.

4. Semi-bandits
• Intermediate between online learning and multi-armed bandits.

• We observe more than just the loss of the realized action,
but less than the loss for all counterfactual actions.

• Typically composite decision problems,
where multiple actions are chosen in the same period
with cross-constraints, e.g. budget constraints.

• Each action has its own observed outcome.
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What is observable? - continued
5. Contextual bandits

• Similar to multi-armed bandits.

• But additionally we observe predictors Xt,
independently of actions Dt.

⇒ Targeted treatment assignment.

6. Reinforcement learning
• Similar to contextual bandits, with an additional state Xt observed in each period.

• But Xt is endogenous to past actions.
It develops according to a Markov transition kernel, given the previous action and
state.

• This framework leads to Bellman equations.
Learning involves estimation of the value function.

• Good actions don’t just generate small loss now,
but also good states next period, and down the road.
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Practice problem
For each of these 5 settings
name some examples of economic settings where they might be applied.
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Optimal solutions versus the theory of heuristic algorithms
• In principle all of these frameworks can be combined

with priors for the underlying parameters.

• This leads to dynamic stochastic optimization problems,
where the “states” are posterior beliefs,
which theoretically have optimal solutions.

• In practice, these solutions are impossible to compute.

• Economic theory in this space has focused on very stylized models,
where solutions might be characterized.

• Modern machine learning has taken another approach:
Construct heuristic algorithms for practically relevant settings,
and develop (very sophisticated) theory to understand their behavior.

• This is the approach we will take in this class.
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Decision theory and alternative evaluation criteria

• In decision theory, we saw different criteria for evaluating decision functions:
Risk function, Bayes risk, minimax risk.

• These criteria translate into different theoretical approaches
for evaluating online learning / active learning algorithms.

• There are some additional subtleties due to asymptotic approximations,
and the dynamic nature of decisions.

1. “Stochastic” models assume that the Yt are i.i.d. draws from some distribution
and characterize behavior conditional on that distribution.

2. “Adversarial” models condition on the sequence of Yt,
and characterize behavior for any possible sequence.
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How to evaluate algorithms (1)

1. i.i.d. draws, fixed parameter
• Results characterize the rate of convergence

of average regret toward 0.

• Key tool: Large deviations theory.

⇒ Good characterizations of bandit algorithms
for the “high powered” case (large samples and/or large treatment effects).

2. i.i.d. draws, worst-case parameter
• Results characterize the rate of convergence

of worst case regret toward 0.

⇒ Good characterization of bandit algorithms
for the “low powered” case (smaller samples and/or smaller treatment effects).
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How to evaluate algorithms (2)
3. i.i.d. draws, drifting parameter

• Similar to approaches taken in the theory of weak instruments.

• Key tool: Uniform central limit theorems.

• Drifting parameter sequences allow to keep the problem equally hard, as sample
size increases.

⇒ This gives a characterization of the risk function for the full range of parameter
values.

4. Worst-case sequence of outcomes
• There is no more probability involved, except possibly in the algorithm.

• Similar to randomization inference, in this regard.

• How could any algorithm possibly perform well for all sequences?

• Key idea: Rather than restricting the data generating process
we can restrict the comparison set of alternative decision functions.

• Related to ideas we saw in PAC learning theory.
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Practice problem
Discuss how these approaches for evaluating algorithms relate
to the criteria we saw in decision theory.
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