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Agenda

e Regression trees: Splitting the covariate space.

e Random forests: Many trees.
Using bootstrap aggregation to improve predictions.

e Causal trees: Predicting heterogeneous causal effects.
Ground truth not directly observable, for cross-validation.
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Takeaways for this part of class

e Trees partition the covariate space and form predictions as local averages.

e [terative splitting of partitions allows us to be more flexible in regions of the
covariate space with more variation of outcomes.

e Bootstrap aggregation (bagging) is a way to get smoother predictions, and
leads to random forests when applied to trees.

® Things get more complicated when we want to predict heterogeneous causal
effects, rather than observable outcomes.

¢ This is because we do not directly observe a ground truth that can be used for
tuning.
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Regression trees

e Suppose we have i.i.d. observations (X, Y;) and want to estimate

g(x) =E[Y|X =x].
e Suppose we furthermore have a partition of the regressor space into subsets
(Ry,...,Rm).

e Then we can estimate g(-) by averages in each element of the partition:

g(x)=Y cm-1(x €Rm)

o — Ziyi'1(Xi S Rm)
T R (Xi € Rm)

¢ This is a regression analog of a histogram.
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Recursive binary partitions
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Constructing the partition

How to choose the partition?
Start with the trivial partition with one element.

Greedy algorithm (CART): Iteratively split an element of the partition,
such that the in-sample prediction improves as much as possible.
Thatis: Given (Rq,...,Ru),
e ForeachRm, m=1,...,M, and
e foreach X;,j=1,....k,
* find the x; ;, that minimizes the mean squared error,
if we split Ry along variable X; at x; m.
Then pick the (m,j) that minimizes the mean squared error,
and construct a new partition with M 41 elements.
® |terate.
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Tuning and pruning

e Key tuning parameter: Total number of splits M.
e \We can optimize this via cross-validation.

CART can furthermore be improved using “pruning.”’
Idea:

e Fit a flexible tree (with large M) using CART.

® Then iteratively remove (collapse) nodes.

® To minimize the sum of squared errors,

plus a penalty for the number of elements in the partition.

This improves upon greedy search.
It yields smaller trees for the same mean squared error.
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From trees to forests

e Trees are intuitive and do OK, but they are not amazing for prediction.

e \We can improve performance a lot using either bootstrap aggregation
(bagging) or boosting.
e Bagging:
® Repeatedly draw bootstrap samples (X,b, Y,b 7, from the observed sample.
* For each bootstrap sample, fit a regression tree §°(-).
® Average across bootstrap samples to get the predictor

600 =5

I Mm

Q()

e This is a technique for smoothing predictions.
The resulting predictor is called a “random forest”

® Possible modification:
Restrict candidate splits to a random subset of predictors in each tree-fitting
step.
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An empirical example (courtesy of Jann Spiess)

number of rooms
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Regression tree

© 10.2204170485145
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Random forest

predicted_log_consumption
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Causal trees
e Suppose we observe i.i.d. draws of (Y;,D;, X;), and wish to estimate
7(x) = E[Y|D =1,X =x] —E[Y|D = 0,X = x].

e Motivation: This is the conditional average treatment effect
under an unconfoundedness assumption on potential outcomes,

(Y, ¥y L D|X.

e This is relevant, in particular, for targeted treatment assignment.
e We might, for a given partition Z = (Ry,...,Rpy), use the estimator

tx)=Y (c}n —cﬁ,) “1(x € Rm)

m
ZiYi'1(Xi S Rm,D,' = d)
Yi1(X; € Rm,D; = d)

cd =
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Targets for splitting and cross-validation

e Recall that CART uses greedy splitting.
It aims to minimize in-sample mean squared error.

e Fortuning, we proposed to use the out-of-sample mean squared error
in order to choose the tree depth.
e Analog for estimation of z(-): Sum of squared errors (minus normalizing
constant),
SSE(#) = ¥, ((a—20))?— 7).
i€
where .¥ is either the estimation sample, or a hold-out sample for
cross-validation.
(The term t? is added as a convenient normalization.)

e Problem: 7; is not observed.
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Targets continued
e Solution: We can rewrite SSE(.¥),

SSE(#) = ¥ (3(X. %) - (3(X1, %) — 23)).
i€
e Suppose we split our sample into (1,.72), use .7 for estimation, and 2 for
tuning. Let %(X,Z) be the estimator based on sample .#/.

e An estimator of SSE(#?) (for tuning) is then given by

SSE(#%) = Y. (41X, %) - (81X, %) = 2%5(X;, 2)))..
i€es
e An analog to the in-sample sum of squared errors (for CART splitting) is given
by
SSE(#") = ¥ (~a(%.2)?).
i€
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