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Outline

• Setup of online convex optimization:
• Iteratively choose xt.
• Observe loss ft(xt) and gradient ∇ft(xt).

• Baseline algorithm:
Online gradient descent (OGD).

• Adversarial regret guarantee for OGD.

• Connection to related settings:
• Adversarial online learning.
• Stochastic gradient descent.
• Multiarmed bandits.
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Takeaways for this part of class

• Online convex optimization provides a natural framework
to connect learning theory and optimization theory.

• Adversarial regret guarantee:
Adversarial regret grows at a rate of

√
T.

• Other settings can be reduced to online convex optimization:
• Stochastic gradient descent:

Adversarial bounds imply stochastic bounds.
Return average of xt at the end.

• Bandit settings:
Form unbiased estimators of loss and gradients
using inverse probability weighting.
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Online gradient descent

Connection to other learning problems

References



Setup
• Sequential choices xt ∈K , where K is convex.

• Convex loss functions ft(·).

• Observable, after choice of xt:
• Cost ft(xt).
• Gradient ∇ft(xt).

• Regret:

RT =
T
∑
t=1

ft(xt)−
T
∑
t=1

ft(x∗),

where

x∗ = argmin
x∈K

T
∑
t=1

ft(x).
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Online gradient descent

• For each t = 1 to T:
1. Play xt.

2. Observe ∇t = ∇ft(xt).

3. Update with a gradient step:

yt+1 = xt−ηt ·∇t.

4. Project into K :
xt+1 = ΠK yt+1.

• The stepsizes ηt are tuning parameters, to be specified.
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Adversarial regret bound

Theorem
• Consider online gradient descent with step-sizes

ηt =
D

G
√
t
,

where

‖x−y‖ ≤ D ∀ x,y ∈K , ‖∇f(x)‖ ≤ G ∀ x ∈K .

• Then:
RT ≤

3
2GD
√
T.
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Proof

• By convexity of ft:
ft(xt)− ft(x∗)≤ ∇t · (xt−x∗).

• By orthogonal projection:

‖xt+1−x∗‖ ≤ ‖yt+1−x∗‖.

• By definition of gradient update:

‖yt+1−x∗‖2 = ‖xt−x∗‖2 + η
2
t ‖∇t‖2−2ηt∇t · (xt−x∗).

• Rearrange. By upper bound on ∇t:

2∇t · (xt−x∗)≤ ‖xt−x∗‖2−‖xt+1−x∗‖2
ηt

+ ηtG2.
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Proof continued
Collect bounds and sum across t:

2Rt ≤ 2∑
t

∇t · (xt−x∗)

≤∑
t

[
‖xt−x∗‖2−‖xt+1−x∗‖2

ηt
+ ηtG2

]
≤∑

t
‖xt−x∗‖2

(
1
ηt
− 1

ηt−1

)
+G2 ·∑

t
ηt (1/η0 = 0,‖xT+1−x∗‖2 ≥ 0)

≤ D2 1
ηT

+G2 ·∑
t

ηt (telescoping series)

≤ 3DG
√
T (definition of ηt;

T
∑
t=1

1/
√
t≤ 2

√
T).

�
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Online learning

• Recall the online learning problem:
• Expert predictions Ŷh,t.

• Loss L(Ŷt,Yt).

• Map into online convex optimization:
• Weight vector xt = (xh,t) in the simplex K .
• Prediction:

Ŷt = ∑
h
xh,t · Ŷh,t.

• Gradient:
∇t =

(
Ŷh,t

)
h
·∂ŶL(Ŷt,Yt).
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Stochastic gradient descent

• Recall the stochastic optimization setting:
• Our goal is to minimize f(x) w.r.t. x.
• We observe unbiased gradient estimates ∇t:

E[∇t|xt] = ∇f(xt).

Think: ∇t = ∇m(x,Zt).

• Stochastic gradient descent:
1. Apply online gradient descent.

2. Return x̄T = 1
T ∑

T
t=1 xt.
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Regret bound for stochastic gradient descent
Assume E[‖∇t‖2]≤ G2. Then

E[f(x̄T)]− f(x∗)≤ 3GD
2
√
T
.

Sketch of proof:

E[f(x̄T)]− f(x∗)≤ 1
T

T
∑
t=1

E [f(xt)− f(x∗)] (convexity)

≤ 1
T

T
∑
t=1

E [∇t · (xt−x∗)] (E[∇t|xt] = ∇f(xt))

≤ 3GD
2
√
T
. (Theorem for OGD)

�
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Multi-armed bandits

• Coming up next in class.

• Only observe loss Lt for actions actually chosen.

• For randomized algorithms, we can form unbiased estimators of the gradient
of reward:

∇t =

(
Lt ·

1(Dt = d)

xd,t

)
d

• This allows us to reduce the adversarial bandit problem
to an online convex optimization problem.
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