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Outline

Setup of online convex optimization:
® |teratively choose x;.

® Observe loss fi(xt) and gradient Vfi(xt).

Baseline algorithm:
Online gradient descent (OGD).

Adversarial regret guarantee for OGD.

Connection to related settings:
® Adversarial online learning.

e Stochastic gradient descent.

® Multiarmed bandits.
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Takeaways for this part of class

e Online convex optimization provides a natural framework
to connect learning theory and optimization theory.

e Adversarial regret guarantee:
Adversarial regret grows at a rate of /T.

e QOther settings can be reduced to online convex optimization:
e Stochastic gradient descent:
Adversarial bounds imply stochastic bounds.
Return average of x; at the end.

® Bandit settings:
Form unbiased estimators of loss and gradients
using inverse probability weighting.
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Online gradient descent

Connection to other learning problems

References



Setup

e Sequential choices x; € ¢, where ¢ is convex.

e Convex loss functions fi(-).

e Observable, after choice of x;:
® Cost fi(xt).
e Gradient Vfi(xt).

® Regret:
T T

Ry = Z ft(Xt) — Z ft(X*),
t=1

t=1
where

.
X" = argmin Z fi(x).
xXexX =1

3/12



Online gradient descent

e Foreacht=1to T:
1. Play xt.

2. Observe Vi = Vfi(xt).
3. Update with a gradient step:
Yig1 =Xt — Nt~ Vi

4. Projectinto 7"
Xep1 =T Y.

e The stepsizes n; are tuning parameters, to be specified.
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Adversarial regret bound

e Consider online gradient descent with step-sizes

_ b
17t - (;\“/iv
where
Ix—yl| <D Vx,yex, IVFX)| <G Vxe..
e Then: 3
Rr < ZGDVT.

2
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Proof

e By convexity of fi:
ft(Xt) — ft(X*) < Vt . (Xt —X*).

e By orthogonal projection:
X1 =X < [lyea =x7[-
e By definition of gradient update:
yee1 = X117 = [Pxe = x|+ nf | Vel = 2meVe - (% = x7).
e Rearrange. By upper bound on Vi:

X=X = [ = x|

th'(Xt—X*) T

+ Tth.
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Proof continued
Collect bounds and sum across t:

2Rt < ZZVt (Xt—X*)
t

*12 * |2
Xt —X — || X —X
< E : |:|| t ” || t+1 ” ntG2:|

t nt
1
<Y lxe—x*|]? — = — ) +G?-
Y x| (-5 ) <6 Em
1
<D?—+G?- ZTIt
nr
<3DGVT

(1/m0 =0, |jx741 —x*|[> > 0)

(telescoping series)

.
(definition of 1¢; ) 1/Vt<2VT).
t=1
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Connection to other learning problems



Online learning

e Recall the online learning problem:
e Expert predictions Yy, .

e Loss L(Y:,Yr).

e Map into online convex optimization:
® Weight vector Xt = (Xp) in the simplex 2.
® Prediction: . A
Yi= th,t Yht
h

® Gradient:
Vi= (Yh,t)h -dgL(Yt,Y1).
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Stochastic gradient descent

¢ Recall the stochastic optimization setting:
e Our goal is to minimize f(x) w.r.t. x.

® \We observe unbiased gradient estimates V;:
E[Vt|Xt] = Vf(Xt).
Think: Vi= Vm(x,Zt).

e Stochastic gradient descent:
1. Apply online gradient descent.

2. RetunXr = + Y. x¢.
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Regret bound for stochastic gradient descent

Assume E[||V+]|2] < G2. Then

3GD

E[f(x7)] —f(x") < —=.

2VT
Sketch of proof:

-
EIf(xr)] - f(x") < 7 ; Eff(xe) —f(x.)]

(convexity)

(E[Vilxi] = V(X))

(Theorem for OGD)
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Multi-armed bandits

e Coming up next in class.

Only observe loss L; for actions actually chosen.

For randomized algorithms, we can form unbiased estimators of the gradient

of reward: (D — d
v, = (Lt‘ (t—)>
Xdt d

This allows us to reduce the adversarial bandit problem
to an online convex optimization problem.
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