Foundations of machine learning
 Shrinkage in the Normal means model

Maximilian Kasy
Department of Economics, University of Oxford

Hilary term 2023

Outline

- Setup: the Normal means model

$$
X \sim N\left(\theta, I_{k}\right)
$$

and the canonical estimation problem with loss $\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2}$.

- The James-Stein (JS) shrinkage estimator.
- Three ways to arrive at the JS estimator (almost):

1. Reverse regression of θ_{i} on X_{i}.
2. Empirical Bayes: random effects model for θ_{i}.
3. Shrinkage factor minimizing Stein's Unbiased Risk Estimate.

- Proof that JS uniformly dominates \boldsymbol{X} as estimator of $\boldsymbol{\theta}$.
- The Normal means model as asymptotic approximation.

Takeaways for this part of class

- Shrinkage estimators trade off variance and bias.
- In multi-dimensional problems, we can estimate the optimal degree of shrinkage.
- Three intuitions that lead to the JS-estimator:

1. Predict θ_{i} given $X_{i} \Rightarrow$ reverse regression.
2. Estimate distribution of the $\theta_{i} \Rightarrow$ empirical Bayes.
3. Find shrinkage factor that minimizes estimated risk.

- Some calculus allows us to derive the risk of JS-shrinkage \Rightarrow better than MLE, no matter what the true θ is.
- The Normal means model is more general than it seems: large sample approximation to any parametric estimation problem.

The Normal means model

Regression perspective

Parametric empirical Bayes

Stein's Unbiased Risk Estimate
Local asymptotic Normality
References

The Normal means model

Setup

- $\theta \in \mathbb{R}^{k}$
- $\varepsilon \sim N\left(0, I_{k}\right)$
- $\boldsymbol{X}=\theta+\varepsilon \sim N\left(\theta, I_{k}\right)$
- Estimator: $\widehat{\boldsymbol{\theta}}=\widehat{\boldsymbol{\theta}}(\boldsymbol{X})$
- Loss: squared error

$$
L(\widehat{\theta}, \theta)=\sum_{i}\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}
$$

- Risk: mean squared error

$$
R(\widehat{\theta}, \theta)=E_{\theta}[L(\widehat{\theta}, \theta)]=\sum_{i} E_{\theta}\left[\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right] .
$$

Two estimators

- Canonical estimator: maximum likelihood,

$$
\widehat{\boldsymbol{\theta}}^{M L}=\boldsymbol{X}
$$

- Risk function

$$
R\left(\widehat{\theta}^{M L}, \theta\right)=\sum_{i} E_{\theta}\left[\varepsilon_{i}^{2}\right]=k
$$

- James-Stein shrinkage estimator

$$
\widehat{\theta}^{J S}=\left(1-\frac{(k-2) / k}{\overline{X^{2}}}\right) \cdot \boldsymbol{X}
$$

- Celebrated result: uniform risk dominance; for all θ

$$
R\left(\widehat{\theta}^{J S}, \theta\right)<R\left(\widehat{\theta}^{M L}, \theta\right)=k
$$

The Normal means model

Regression perspective

Parametric empirical Bayes

Stein's Unbiased Risk Estimate

Local asymptotic Normality

References

First motivation of JS: Regression perspective

- We will discuss three ways to motivate the JS-estimator (up to degrees of freedom correction).
- Consider estimators of the form

$$
\widehat{\theta}_{i}=c \cdot x_{i}
$$

or

$$
\widehat{\theta}_{i}=a+b \cdot X_{i} .
$$

- How to choose cor (a, b) ?
- Two particular possibilities:

1. Maximum likelihood: $c=1$
2. James-Stein: $c=\left(1-\frac{(k-2) / k}{\bar{X}^{2}}\right)$

Practice problem (Infeasible estimator)

- Suppose you knew X_{1}, \ldots, X_{k} as well as $\theta_{1}, \ldots, \theta_{k}$,
- but are constrained to use an estimator of the form $\widehat{\theta}_{i}=c \cdot X_{i}$.

1. Find the value of c that minimizes loss.
2. For estimators of the form $\widehat{\theta}_{i}=a+b \cdot X_{i}$, find the values of a and b that minimize loss.

Solution

- First problem:

$$
c^{*}=\underset{c}{\operatorname{argmin}} \sum_{i}\left(c \cdot X_{i}-\theta_{i}\right)^{2}
$$

- Least squares problem!
- First order condition:

$$
0=\sum_{i}\left(c^{*} \cdot X_{i}-\theta_{i}\right) \cdot X_{i}
$$

- Solution

$$
c^{*}=\frac{\sum X_{i} \theta_{i}}{\sum_{i} X_{i}^{2}}
$$

Solution continued

- Second problem:

$$
\left(a^{*}, b^{*}\right)=\underset{a, b}{\operatorname{argmin}} \sum_{i}\left(a+b \cdot X_{i}-\theta_{i}\right)^{2}
$$

- Least squares problem again!
- First order conditions:

$$
\begin{aligned}
& 0=\sum_{i}\left(a^{*}+b^{*} \cdot X_{i}-\theta_{i}\right) \\
& 0=\sum_{i}\left(a^{*}+b^{*} \cdot X_{i}-\theta_{i}\right) \cdot X_{i} .
\end{aligned}
$$

- Solution

$$
b^{*}=\frac{\sum\left(X_{i}-\bar{X}\right) \cdot\left(\theta_{i}-\bar{\theta}\right)}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}=\frac{s_{X \theta}}{s_{X}^{2}}, \quad a^{*}+b^{*} \cdot \bar{X}=\bar{\theta}
$$

Regression and reverse regression

- Recall $X_{i}=\theta_{i}+\varepsilon_{i}, E\left[\varepsilon_{i} \mid \theta_{i}\right]=0, \operatorname{Var}\left(\varepsilon_{i}\right)=1$.
- Regression of X on θ : Slope

$$
\frac{s_{X \theta}}{s_{\theta}^{2}}=1+\frac{s_{\varepsilon \theta}}{s_{\theta}^{2}} \approx 1 .
$$

- For optimal shrinkage, we want to predict θ given X, not the other way around!
- Reverse regression of θ on X : Slope

$$
\frac{s_{X \theta}}{s_{X}^{2}}=\frac{s_{\theta}^{2}+s_{\varepsilon \theta}}{s_{\theta}^{2}+2 s_{\varepsilon \theta}+s_{\varepsilon}^{2}} \approx \frac{s_{\theta}^{2}}{s_{\theta}^{2}+1} .
$$

- Interpretation: "signal to (signal plus noise) ratio" <1.

Illustration

Expectations

Practice problem

1. Calculate the expectations of

$$
\bar{X}=\frac{1}{k} \sum_{i} X_{i}, \quad \overline{X^{2}}=\frac{1}{k} \sum_{i} X_{i}^{2},
$$

and

$$
s_{X}^{2}=\frac{1}{k} \sum_{i}\left(X_{i}-\bar{X}\right)^{2}=\overline{X^{2}}-\bar{X}^{2}
$$

2. Calculate the expected numerator and denominator of c^{*} and b^{*}.

Solution

- $E[\bar{X}]=\bar{\theta}$
- $E\left[\overline{X^{2}}\right]=\overline{\theta^{2}}+1$
- $E\left[s_{X}^{2}\right]=\overline{\theta^{2}}-\bar{\theta}^{2}+1=s_{\theta}^{2}+1$
- $c^{*}=(\overline{X \theta}) /\left(\overline{X^{2}}\right)$, and $E[\overline{X \theta}]=\overline{\theta^{2}}$. Thus

$$
c^{*} \approx \frac{\overline{\theta^{2}}}{\overline{\theta^{2}}+1} .
$$

- $b^{*}=s_{X \theta} / s_{X}^{2}$, and $E\left[s_{X \theta}\right]=s_{\theta}^{2}$. Thus

$$
b^{*} \approx \frac{s_{\theta}^{2}}{s_{\theta}^{2}+1}
$$

Feasible analog estimators

Practice problem

Propose feasible estimators of c^{*} and b^{*}.

A solution

- Recall:
- $c^{*}=\frac{\overline{X \theta}}{\overline{X^{2}}}$
- $\overline{\theta \varepsilon} \approx 0, \overline{\varepsilon^{2}} \approx 1$.
- Since $X_{i}=\theta_{i}+\varepsilon_{i}$,

$$
\overline{X \theta}=\overline{X^{2}}-\overline{X \varepsilon}=\overline{X^{2}}-\overline{\theta \varepsilon}-\overline{\varepsilon^{2}} \approx \overline{X^{2}}-1
$$

- Thus:

$$
c^{*}=\frac{\overline{X^{2}}-\overline{\theta \varepsilon}-\overline{\varepsilon^{2}}}{\overline{X^{2}}} \approx \frac{\overline{X^{2}}-1}{\overline{X^{2}}}=1-\frac{1}{\overline{X^{2}}}=: \widehat{c} .
$$

Solution continued

- Similarly:
- $b^{*}=\frac{s_{X \theta}}{s_{X}^{2}}$
- $s_{\theta \varepsilon} \approx 0, s_{\varepsilon}^{2} \approx 1$.
- Since $X_{i}=\theta_{i}+\varepsilon_{i}$,

$$
s_{X \theta}=s_{X}^{2}-s_{X \varepsilon}=s_{X}^{2}-s_{\theta \varepsilon}-s_{\varepsilon}^{2} \approx s_{X}^{2}-1
$$

- Thus:

$$
b^{*}=\frac{s_{X}^{2}-s_{\theta \varepsilon}-s_{\varepsilon}^{2}}{s_{X}^{2}} \approx \frac{s_{X}^{2}-1}{s_{X}^{2}}=1-\frac{1}{s_{X}^{2}}=: \widehat{b}
$$

James-Stein shrinkage

- We have almost derived the James-Stein shrinkage estimator.
- Only difference: degree of freedom correction
- Optimal corrections:

$$
c^{J S}=1-\frac{(k-2) / k}{\overline{X^{2}}}
$$

and

$$
b^{J S}=1-\frac{(k-3) / k}{s_{X}^{2}}
$$

- Note: if $\theta=0$, then $\sum_{i} X_{i}^{2} \sim \chi_{k}^{2}$.
- Then, by properties of inverse χ^{2} distributions

$$
E\left[\frac{1}{\sum_{i} X_{i}^{2}}\right]=\frac{1}{k-2}
$$

so that $E\left[c^{J S}\right]=0$.

Positive part JS-shrinkage

- The estimated shrinkage factors can be negative.
- $c^{J S}<0$ iff

$$
\sum_{i} x_{i}^{2}<k-2
$$

- Better estimator: restrict to $c \geq 0$.
- "Positive part James-Stein estimator:"

$$
\widehat{\theta}^{J S+}=\max \left(0,1-\frac{(k-2) / k}{\overline{X^{2}}}\right) \cdot X
$$

- Dominates James-Stein.
- We will focus on the JS-estimator for analytical tractability.

The Normal means model

Regression perspective

Parametric empirical Bayes

Stein's Unbiased Risk Estimate

Local asymptotic Normality

References

Second motivation of JS: Parametric empirical Bayes

Setup

- As before: $\theta \in \mathbb{R}^{k}$
- $\boldsymbol{X} \mid \theta \sim N\left(\theta, I_{k}\right)$
- Loss $L(\widehat{\theta}, \theta)=\sum_{i}\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}$
- Now add an additional conceptual layer:

Think of θ_{i} as i.i.d. draws from some distribution.

- "Random effects vs. fixed effects"
- Let's consider $\theta_{i} \sim^{\text {iid }} N\left(0, \tau^{2}\right)$, where τ^{2} is unknown.

Practice problem

- Derive the marginal distribution of \boldsymbol{X} given τ^{2}.
- Find the maximum likelihood estimator of τ^{2}.
- Find the conditional expectation of θ given \boldsymbol{X} and τ^{2}.
- Plug in the maximum likelihod estimator of τ^{2} to get the empirical Bayes estimator of θ.

Solution

- Marginal distribution:

$$
X \sim N\left(0,\left(\tau^{2}+1\right) \cdot I_{k}\right)
$$

- Maximum likelihood estimator of τ^{2} :

$$
\begin{aligned}
\widehat{\tau^{2}} & =\underset{t^{2}}{\operatorname{argmax}}-\frac{1}{2} \sum_{i}\left(\log \left(\tau^{2}+1\right)+\frac{X_{i}^{2}}{\left(\tau^{2}+1\right)}\right) \\
& =\overline{X^{2}}-1
\end{aligned}
$$

- Conditional expectation of θ_{i} given X_{i}, τ^{2}.

$$
\widehat{\theta}_{i}=\frac{\operatorname{Cov}\left(\theta_{i}, X_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \cdot X_{i}=\frac{\tau^{2}}{\tau^{2}+1} \cdot X_{i}
$$

- Plugging in $\widehat{\tau^{2}}$.

$$
\widehat{\theta}_{i}=\left(1-\frac{1}{\overline{X^{2}}}\right) \cdot X_{i}
$$

General parametric empirical Bayes Setup

- Data X, parameters θ, hyper-parameters η
- Likelihood

$$
x \mid \theta, \eta \sim f_{X \mid \theta}
$$

- Family of priors

$$
\theta \mid \eta \sim f_{\theta \mid \eta}
$$

- Limiting cases:
- $\theta=\eta$: Frequentist setup.
- η has only one possible value: Bayesian setup.

Empirical Bayes estimation

- Marginal likelihood

$$
f_{X \mid \eta}(x \mid \eta)=\int f_{X \mid \theta}(x \mid \theta) f_{\theta \mid \eta}(\theta \mid \eta) d \theta
$$

Has simple form when family of priors is conjugate.

- Estimator for hyper-parameter η : marginal MLE

$$
\widehat{\eta}=\underset{\eta}{\operatorname{argmax}} f_{X \mid \eta}(x \mid \eta) .
$$

- Estimator for parameter θ : pseudo-posterior expectation

$$
\widehat{\theta}=E[\theta \mid X=x, \eta=\widehat{\eta}] .
$$

The Normal means model

Regression perspective

Parametric empirical Bayes

Stein's Unbiased Risk Estimate

Local asymptotic Normality

References

Third motivation of JS: Stein's Unbiased Risk Estimate

- Stein's lemma (simplified version):
- Suppose $\boldsymbol{X} \sim N\left(\theta, I_{k}\right)$.
- Suppose $g(\cdot): \mathbb{R}^{k} \rightarrow \mathbb{R}$ is differentiable and $E\left[\left|g^{\prime}(\boldsymbol{X})\right|\right]<\infty$.
- Then

$$
E[(\boldsymbol{X}-\theta) \cdot g(\boldsymbol{X})]=E[\nabla g(\boldsymbol{X})] .
$$

- Note:
- θ shows up in the expression on the LHS, but not on the RHS
- Unbiased estimator of the RHS: $\nabla g(\boldsymbol{X})$

Practice problem
Prove this.
Hints:

1. Show that the standard Normal density $\varphi(\cdot)$ satisfies

$$
\varphi^{\prime}(x)=-x \cdot \varphi(x) .
$$

2. Consider each component i separately and use integration by parts.

Solution

- Recall that $\varphi(x)=(2 \pi)^{-0.5} \cdot \exp \left(-x^{2} / 2\right)$. Differentiation immediately yields the first claim.
- Consider the component $i=1$; the others follow similarly. Then

$$
\begin{aligned}
& E\left[\partial_{x_{1}} g(X)\right]= \\
& =\int_{x_{2}, \ldots x_{k}} \int_{x_{1}} \partial_{x_{1}} g\left(x_{1}, \ldots, x_{k}\right) \\
& =\int_{x_{2}, \ldots x_{k}} \int_{x_{1}} g\left(x_{1}, \ldots, x_{k}\right) \\
& \cdot\left(-\partial_{x_{1}} \varphi\left(x_{1}-\theta_{1}\right)\right) \cdot \prod_{i=2}^{k} \varphi\left(x_{i}-\theta_{i}\right) d x_{1} \ldots d x_{k} \\
& =\int_{x_{2}, \ldots x_{k}} \int_{x_{1}} g\left(x_{1}, \ldots, x_{k}\right) \\
& \cdot\left(x_{1}-\theta_{1}\right) \varphi\left(x_{1}-\theta_{1}\right) \cdot \prod_{i=2}^{k} \varphi\left(x_{i}-\theta_{i}\right) d x_{1} \ldots d x_{k} \\
& =E\left[\left(X_{1}-\theta_{1}\right) \cdot g(\boldsymbol{X})\right] \text {. } \\
& \cdot \varphi\left(x_{1}-\theta_{1}\right) \cdot \prod_{i=2}^{k} \varphi\left(x_{i}-\theta_{i}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

- Collecting the components $i=1, \ldots, k$ yields

$$
E[(\boldsymbol{X}-\theta) \cdot g(\boldsymbol{X})]=E[\nabla g(\boldsymbol{X})] .
$$

Stein's representation of risk

- Consider a general estimator for θ of the form $\widehat{\boldsymbol{\theta}}=\widehat{\boldsymbol{\theta}}(\boldsymbol{X})=\boldsymbol{X}+\boldsymbol{g}(\boldsymbol{X})$, for differentiable \mathbf{g}.
- Recall that the risk function is defined as

$$
R(\widehat{\theta}, \theta)=\sum_{i} E\left[\left(\widehat{\theta}_{i}-\theta_{i}\right)^{2}\right]
$$

- We will show that this risk function can be rewritten as

$$
R(\widehat{\theta}, \theta)=k+\sum_{i}\left(E\left[g_{i}(\boldsymbol{X})^{2}\right]+2 E\left[\partial_{x_{i}} g_{i}(\boldsymbol{X})\right]\right)
$$

Practice problem

- Interpret this expression.
- Propose an unbiased estimator of risk, based on this expression.

Answer

- The expression of risk has 3 components:

1. k is the risk of the canonical estimator $\widehat{\theta}=\boldsymbol{X}$, corresponding to $\boldsymbol{g} \equiv 0$.
2. $\sum_{i} E\left[g_{i}(\boldsymbol{X})^{2}\right]=\sum_{i} E\left[\left(\widehat{\theta}_{i}-X_{i}\right)^{2}\right]$ is the sample sum of squared errors.
3. $\sum_{i} E\left[\partial_{x_{i}} g_{i}(\boldsymbol{X})\right]$ can be thought of as a penalty for overfitting.

- We thus can think of this expression as giving a "penalized least squares" objective.
- The sample analog expression gives "Stein's Unbiased Risk Estimate" (SURE)

$$
\widehat{R}=k+\sum_{i}\left(\widehat{\theta}_{i}-X_{i}\right)^{2}+2 \cdot \sum_{i} \partial_{x_{i}} g_{i}(\boldsymbol{X})
$$

- We will use Stein's representation of risk in 2 ways:

1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).
2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein's representation of risk.
Hints:

- Add and subtract X_{i} in the expression defining $R(\widehat{\theta}, \theta)$.
- Use Stein's lemma.

Solution

$$
\begin{array}{rlrr}
R(\theta) & =\sum_{i} E\left[\left(\widehat{\theta}_{i}-X_{i}+X_{i}-\theta_{i}\right)^{2}\right] & & \\
& =\sum_{i} E\left[\left(X_{i}-\theta_{i}\right)^{2}\right. & & +\left(\widehat{\theta}_{i}-X_{i}\right)^{2} \\
& =\sum_{i} 1 & & \left.+E\left[\widehat{\theta}_{i}-X_{i}\right) \cdot\left(X_{i}-\theta_{i}\right)\right] \\
& =\sum_{i} 1 & & +2 E\left[g_{i}(\boldsymbol{X}) \cdot\left(X_{i}-\theta_{i}\right)\right]
\end{array}
$$

where Stein's lemma was used in the last step.

Using SURE to pick the tuning parameter

- First use of SURE: To pick tuning parameters, as an alternative to cross-validation or marginal likelihood maximization.
- Simple example: Linear shrinkage estimation

$$
\widehat{\theta}=c \cdot X .
$$

Practice problem

- Calculate Stein's unbiased risk estimate for $\widehat{\boldsymbol{\theta}}$.
- Find the coefficient c minimizing estimated risk.

Solution

- When $\widehat{\theta}=c \cdot \boldsymbol{X}$, then $\boldsymbol{g}(\boldsymbol{X})=\hat{\boldsymbol{\theta}}-\boldsymbol{X}=(c-1) \cdot \boldsymbol{X}$, and $\partial_{x_{i}} g_{i}(\boldsymbol{X})=c-1$.
- Estimated risk:

$$
\widehat{R}=k+(1-c)^{2} \cdot \sum_{i} x_{i}^{2}+2 k \cdot(c-1) .
$$

- First order condition for minimizing \widehat{R} :

$$
k=\left(1-c^{*}\right) \cdot \sum_{i} x_{i}^{2} .
$$

- Thus

$$
c^{*}=1-\frac{1}{\overline{X^{2}}}
$$

- Once again: Almost the JS estimator, up to degrees of freedom correction!

Celebrated result: Dominance of the JS-estimator

- We next use the population version of SURE to prove uniform dominance of the JS-estimator relative to maximum likelihood.
- Recall that the James-Stein estimator was defined as

$$
\widehat{\theta}^{J S}=\left(1-\frac{(k-2) / k}{\overline{X^{2}}}\right) \cdot \boldsymbol{X}
$$

- Claim: The JS-estimator has uniformly lower risk than $\widehat{\boldsymbol{\theta}}^{M L}=\boldsymbol{X}$.

Practice problem

Prove this, using Stein's representation of risk.

Solution

- The risk of $\hat{\theta}^{M L}$ is equal to k.
- For JS, we have

$$
\begin{aligned}
g_{i}(\boldsymbol{X})=\widehat{\theta}_{i}^{J S}-X_{i}= & -\frac{k-2}{\sum_{j} X_{j}^{2}} \cdot X_{i}, \\
\partial_{x_{i}} g_{i}(\boldsymbol{X})= & \frac{k-2}{\sum_{j} X_{j}^{2}} \cdot\left(-1+\frac{2 X_{i}^{2}}{\sum_{j} X_{j}^{2}}\right) .
\end{aligned}
$$

- Summing over components gives

$$
\begin{aligned}
\sum_{i} g_{i}(\boldsymbol{X})^{2} & =\frac{(k-2)^{2}}{\sum_{j} x_{j}^{2}} \\
\sum_{i} \partial_{x_{i}} g_{i}(\boldsymbol{X}) & =-\frac{(k-2)^{2}}{\sum_{j} x_{j}^{2}}
\end{aligned}
$$

and

Solution continued

- Plugging into Stein's expression for risk then gives

$$
\begin{aligned}
R\left(\widehat{\theta}^{J S}, \theta\right)= & k+E\left[\sum_{i} g_{i}(\boldsymbol{X})^{2}+2 \sum_{i} \partial_{x_{i}} g_{i}(\boldsymbol{X})\right] \\
= & k+E\left[\frac{(k-2)^{2}}{\sum_{i} X_{i}^{2}}-2 \frac{(k-2)^{2}}{\sum_{j} X_{j}^{2}}\right] \\
& =k-E\left[\frac{(k-2)^{2}}{\sum_{i} X_{i}^{2}}\right] .
\end{aligned}
$$

- The term $\frac{(k-2)^{2}}{\Sigma_{i} X_{i}^{2}}$ is always positive (for $k \geq 3$), and thus so is its expectation. Uniform dominance immediately follows.
- Pretty cool, no?

The Normal means model

Regression perspective

Parametric empirical Bayes

Stein's Unbiased Risk Estimate

Local asymptotic Normality

References

The Normal means model as asymptotic approximation

- The Normal means model might seem quite special.
- But asymptotically, any sufficiently smooth parametric model is equivalent.
- Formally: The likelihood ratio process of n i.i.d. draws Y_{i} from the distribution

$$
P_{\theta_{0}+h / \sqrt{n}}^{n},
$$

converges to the likelihood ratio process of one draw X from

$$
N\left(h, I_{\theta_{0}}^{-1}\right)
$$

- Here h is a local parameter for the model around θ_{0}, and $\boldsymbol{I}_{\theta_{0}}$ is the Fisher information matrix.
- Suppose that P_{θ} has a density f_{θ} relative to some measure.
- Recall the following definitions:
- Log-likelihood: $\ell_{\theta}(Y)=\log f_{\theta}(Y)$
- Score: $\dot{\ell}_{\theta}(Y)=\partial_{\theta} \log f_{\theta}(Y)$
- Hessian $\ddot{\ell}_{\theta}(Y)=\partial_{\theta}^{2} \log f_{\theta}(Y)$
- Information matrix: $\boldsymbol{I}_{\theta}=\operatorname{Var}_{\theta}\left(\dot{\ell}_{\theta}(Y)\right)=-E_{\theta}\left[\ddot{\ell}_{\theta}(Y)\right]$
- Likelihood ratio process:

$$
\prod_{i} \frac{f_{\theta_{0}+h / \sqrt{n}}\left(Y_{i}\right)}{f_{\theta_{0}}\left(Y_{i}\right)},
$$

where Y_{1}, \ldots, Y_{n} are i.i.d. $P_{\theta_{0}+h / \sqrt{n}}$ distributed.

Practice problem (Taylor expansion)

- Using this notation, provide a second order Taylor expansion for the log-likelihood $\ell_{\theta_{0}+h}(Y)$ with respect to h.
- Provide a corresponding Taylor expansion for the log-likelihood of n i.i.d. draws Y_{i} from the distribution $P_{\theta_{0}+h / \sqrt{n}}$.
- Assuming that the remainder is negligible, describe the limiting behavior (as $n \rightarrow \infty$) of the log-likelihood ratio process

$$
\log \prod_{i} \frac{f_{\theta_{0}+h / \sqrt{n}}\left(Y_{i}\right)}{f_{\theta_{0}}\left(Y_{i}\right)}
$$

Solution

- Expansion for $\ell_{\theta_{0}+h}(Y)$:

$$
\ell_{\theta_{0}+h}(Y)=\ell_{\theta_{0}}(Y)+h^{\prime} \cdot \dot{\ell}_{\theta_{0}}(Y)+\frac{1}{2} \cdot h \cdot \ddot{\ell}_{\theta_{0}}(Y) \cdot h+\text { remainder } .
$$

- Expansion for the log-likelihood ratio of n i.i.d. draws:

$$
\log \prod_{i} \frac{f_{\theta_{0}+h^{\prime} / \sqrt{n}}\left(Y_{i}\right)}{f_{\theta_{0}}\left(Y_{i}\right)}=\frac{1}{\sqrt{n}} h^{\prime} \cdot \sum_{i} \dot{\ell}_{\theta_{0}}\left(Y_{i}\right)+\frac{1}{2 n} h^{\prime} \cdot \sum_{i} \ddot{\ell}_{\theta_{0}}\left(Y_{i}\right) \cdot h+\text { remainder } .
$$

- Asymptotic behavior (by CLT, LLN):

$$
\begin{aligned}
\Delta_{n}:= & \frac{1}{\sqrt{n}} \sum_{i} \dot{\ell}_{\theta_{0}}\left(Y_{i}\right) \rightarrow^{d} N\left(0, I_{\theta_{0}}\right), \\
& \frac{1}{2 n} \cdot \sum_{i} \ddot{\ell}_{\theta_{0}}\left(Y_{i}\right) \rightarrow^{p}-\frac{1}{2} I_{\theta_{0}} .
\end{aligned}
$$

- Suppose the remainder is negligible.
- Then the previous slide suggests

$$
\log \prod_{i} \frac{f_{\theta_{0}+h / \sqrt{n}}\left(Y_{i}\right)}{f_{\theta_{0}}\left(Y_{i}\right)}={ }^{A} h^{\prime} \cdot \Delta-\frac{1}{2} h^{\prime} \boldsymbol{I}_{\theta_{0}} h,
$$

where

$$
\Delta \sim N\left(0, I_{\theta_{0}}\right)
$$

- Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for this to hold.
- We show next that this is the same likelihood ratio process as for the model

$$
N\left(h, I_{\theta_{0}}^{-1}\right)
$$

Practice problem

- Suppose $X \sim N\left(h, \boldsymbol{I}_{\theta_{0}}^{-1}\right)$
- Write out the log likelihood ratio

$$
\log \frac{\varphi_{\frac{\theta_{\theta}}{-1}}(X-h)}{\varphi_{i_{\theta_{0}}^{-1}}(X)} .
$$

Solution

- The Normal density is given by

$$
\varphi_{l_{\theta_{0}}^{-1}}(x)=\frac{1}{\sqrt{(2 \pi)^{k}\left|\operatorname{det}\left(I_{\theta_{0}}^{-1}\right)\right|}} \cdot \exp \left(-\frac{1}{2} x^{\prime} \cdot I_{\theta_{0}} \cdot x\right)
$$

- Taking ratios and logs yields

$$
\log \frac{\varphi_{\boldsymbol{I}_{\theta_{0}}^{-1}}(X-h)}{\varphi_{I_{\theta_{0}}^{-1}}(X)}=h^{\prime} \cdot \boldsymbol{I}_{\theta_{0}} \cdot x-\frac{1}{2} h^{\prime} \cdot \boldsymbol{I}_{\theta_{0}} \cdot h .
$$

- This is exactly the same process we obtained before, with $\boldsymbol{I}_{\theta_{0}} \cdot X$ taking the role of Δ.

Why care

- Suppose that $Y_{i} \sim^{\text {iid }} P_{\theta+h / \sqrt{n}}$, and $T_{n}\left(Y_{1}, \ldots, Y_{n}\right)$ is an arbitrary statistic that satisfies

$$
T_{n} \rightarrow^{d} L_{\theta, h}
$$

for some limiting distribution $L_{\theta, h}$ and all h.

- Then $L_{\theta, h}$ is the distribution of some (possibly randomized) statistic $T(X)$!
- This is a (non-obvious) consequence of the convergence of the likelihood ratio process.
- cf. Theorem 7.10 in van der Vaart (2000).

Maximum likelihood and shrinkage

- This result applies in particular to $T=$ estimators of θ.
- Suppose that $\widehat{\theta}^{M L}$ is the maximum likelihood estimator.
- Then $\widehat{\theta}^{M L} \rightarrow{ }^{d} X$, and any shrinkage estimator based on $\widehat{\theta}^{M L}$ converges in distribution to a corresponding shrinkage estimator in the limit experiment.

References

- Textbook introduction:

Wasserman, L. (2006). All of nonparametric statistics. Springer Science \& Business Media, chapter 7.

- Reverse regression perspective:

Stigler, S. M. (1990). The 1988 Neyman memorial lecture: a Galtonian perspective on shrinkage estimators. Statistical Science, pages 147-155.

- Parametric empirical Bayes:

Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78(381):pp. 47-55.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31. Springer, section 4.6.

- Stein's Unbiased Risk Estimate:

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 9(6):1135-1151.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31. Springer, sections 5.2, 5.4, 5.5.

- The Normal means model as asymptotic approximation:
van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge University Press, chapter 7.

Hansen, B. E. (2016). Efficient shrinkage in parametric models. Journal of Econometrics, 190(1):115-132.

