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Outline

• 6 equivalent representations of the posterior mean in the Normal-Normal
model.

• Gaussian process priors for regression functions.

• Reproducing Kernel Hilbert Spaces and splines.

• Applications from my own work, to
1. Optimal treatment assignment in experiments.

2. Optimal insurance and taxation.
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Takeaways for this part of class

• In a Normal means model with Normal prior, there are a number of equivalent
ways to think about regularization.

• Posterior mean, penalized least squares, shrinkage, etc.

• We can extend from estimation of means to estimation of functions using
Gaussian process priors.

• Gaussian process priors yield the same function estimates as penalized least
squares regressions.

• Theoretical tool: Reproducing kernel Hilbert spaces.

• Special case: Spline regression.
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Normal posterior means – equivalent representations

Gaussian process regression

Splines and Reproducing Kernel Hilbert Spaces

References



Normal posterior means – equivalent representations
Setup

• θ ∈ Rk

• X|θ ∼ N(θ , Ik)

• Loss
L(θ̂ ,θ) = ∑

i
(θ̂i−θi)

2

• Prior
θ ∼ N(0,C)
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6 equivalent representations of the posterior mean

1. Minimizer of weighted average risk

2. Minimizer of posterior expected loss

3. Posterior expectation

4. Posterior best linear predictor

5. Penalized least squares estimator

6. Shrinkage estimator
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1) Minimizer of weighted average risk

• Minimize weighted average risk (= Bayes risk),

• averaging loss L(θ̂ ,θ) = (θ̂ −θ)2 over both
1. the sampling distribution fX|θ , and

2. weighting values of θ using the decision weights (prior) πθ .

• Formally,
θ̂(·) = argmin

t(·)

∫
Eθ [L(t(X),θ)]dπ(θ).
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2) Minimizer of posterior expected loss

• Minimize posterior expected loss,

• averaging loss L(θ̂ ,θ) = (θ̂ −θ)2 over
1. just the posterior distribution πθ |X .

• Formally,
θ̂(x) = argmin

t

∫
L(t,θ)dπθ |X(θ |x).
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3 and 4) Posterior expectation and
posterior best linear predictor

• Note that (
X
θ

)
∼ N

(
0,
(
C+ I C
C C

))
.

• Posterior expectation:
θ̂ = E[θ |X].

• Posterior best linear predictor:

θ̂ = E∗[θ |X] = C · (C+ I)−1 ·X.
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5) Penalization

• Minimize
1. the sum of squared residuals,

2. plus a quadratic penalty term.

• Formally,

θ̂ = argmin
t

n
∑
i=1

(Xi− ti)2 +‖t‖2,

• where
‖t‖2 = t′C−1t.
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6) Shrinkage
• Diagonalize C: Find

1. orthonormal matrix U of eigenvectors, and

2. diagonal matrix D of eigenvalues, so that
C = UDU′.

• Change of coordinates, using U:

X̃ = U′X
θ̃ = U′θ .

• Componentwise shrinkage in the new coordinates:

̂̃
θ i =

di
di + 1 X̃i. (1)
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Practice problem
Show that these 6 objects are all equivalent to each other.
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Solution (sketch)
1. Minimizer of weighted average risk = minimizer of posterior expected loss: See

decision slides.
2. Minimizer of posterior expected loss = posterior expectation:

• First order condition for quadratic loss function,
• pull derivative inside,
• and switch order of integration.

3. Posterior expectation = posterior best linear predictor:
• X and θ are jointly Normal,
• conditional expectations for multivariate Normals are linear.

4. Posterior expectation⇒ penalized least squares:
• Posterior is symmetric unimodal⇒ posterior mean is posterior mode.
• Posterior mode = maximizer of posterior log-likelihood = maximizer of joint log

likelihood,
• since denominator fX does not depend on θ . 11 / 36



Solution (sketch) continued
5. Penalized least squares⇒ posterior expectation:

• Any penalty of the form
t′At

for A symmetric positive definite
• corresponds to the log of a Normal prior

θ ∼ N
(
0,A−1

)
.

6. Componentwise shrinkage = posterior best linear predictor:
• Change of coordinates turns θ̂ = C · (C+ I)−1 ·X into

̂̃
θ = D · (D+ I)−1 ·X.

• Diagonality implies
D · (D+ I)−1 = diag

(
di

di + 1

)
.
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Gaussian processes for machine learning
Machine Learning⇔metrics dictionary

machine learning metrics
supervised learning regression
features regressors
weights coefficients
bias intercept
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Gaussian prior for linear regression

• Normal linear regression model:

• Suppose we observe n i.i.d. draws of (Yi,Xi), where Yi is real valued and Xi is a k
vector.

• Yi = Xi ·β + εi

• εi|X,β ∼ N(0,σ2)

• β |X ∼ N(0,Ω) (prior)

• Note: will leave conditioning on X implicit in following slides.
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Practice problem (“weight space view”)
• Find the posterior expectation of β

• Hints:
1. The posterior expectation is the maximum a posteriori.

2. The log likelihood takes a penalized least squares form.

• Find the posterior expectation of x ·β for some (non-random) point x.
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Solution
• Joint log likelihood of Y,β :

log(fYβ ) =log(fY|β ) + log(fβ )

=const.− 1
2σ2 ∑

i
(Yi−Xiβ )2− 1

2β
′Ω−1β .

• First order condition for maximum a posteriori:

0 =
∂ fYβ

∂β
=

1
σ2 ∑

i
(Yi−Xiβ ) ·Xi−β

′Ω−1.

⇒ β̂ =

(
∑
i
X′iXi + σ

2Ω−1
)−1
·∑X′iYi.

• Thus
E[x ·β |Y] = x · β̂ = x ·

(
X′X + σ

2Ω−1
)−1
·X′Y.
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• Previous derivation required inverting k×k matrix.

• Can instead do prediction inverting an n×n matrix.

• n might be smaller than k if there are many “features.”

• This will lead to a “function space view” of prediction.

Practice problem (“kernel trick”)
• Find the posterior expectation of

f(x) = E[Y|X = x] = x ·β .

• Wait, didn’t we just do that?

• Hints:
1. Start by figuring out the variance / covariance matrix of (x ·β ,Y).

2. Then deduce the best linear predictor of x ·β given Y.
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Solution

• The joint distribution of (x ·β ,Y) is given by(
x ·β
Y

)
∼ N

(
0,
(
xΩx′ xΩX′
XΩx′ XΩX′+ σ2In

))
• Denote C = XΩX′ and c(x) = xΩX′.

• Then
E[x ·β |Y] = c(x) ·

(
C+ σ

2In
)−1
·Y.

• Contrast with previous representation:

E[x ·β |Y] = x ·
(
X′X + σ

2Ω−1
)−1
·X′Y.

18 / 36



General GP regression
• Suppose we observe n i.i.d. draws of (Yi,Xi), where Yi is real valued and Xi is a k

vector.

• Yi = f(Xi) + εi

• εi|X, f(·)∼ N(0,σ2)

• Prior: f is distributed according to a Gaussian process,

f|X ∼ GP(0,C),

where C is a covariance kernel,

Cov(f(x), f(x′)|X) = C(x,x′).

• We will again leave conditioning on X implicit in following slides.
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Practice problem
• Find the posterior expectation of f(x).

• Hints:
1. Start by figuring out the variance / covariance matrix of (f(x),Y).

2. Then deduce the best linear predictor of f(x) given Y.
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Solution
• The joint distribution of (f(x),Y) is given by(

f(x)
Y

)
∼ N

(
0,
(
C(x,x) c(x)
c(x)′ C+ σ2In

))
,

where
• c(x) is the n vector with entries C(x,Xi),
• and C is the n×n matrix with entries Ci,j = C(Xi,Xj).

• Then, as before,
E[f(x)|Y] = c(x) ·

(
C+ σ

2In
)−1
·Y.

• Read: f̂(·) = E[f(·)|Y]
• is a linear combination of the functions C(·,Xi)

• with weights
(
C+ σ2In

)−1 ·Y.
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Hyperparameters and marginal likelihood

• Usually, covariance kernel C(·, ·) depends on on hyperparameters η .

• Example: squared exponential kernel with η = (l,τ2)
(length-scale l, variance τ2).

C(x,x′) = τ
2 · exp

(
− 1

2l‖x−x′‖2
)

• Following the empirical Bayes paradigm, we can estimate η by maximizing the
marginal log likelihood:

η̂ = argmax
η

− 1
2 |det(Cη + σ

2I)|− 1
2Y
′(Cη + σ

2I)−1Y

• Alternatively, we could choose η using cross-validation or Stein’s unbiased risk
estimate.
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Splines and Reproducing Kernel Hilbert Spaces

• Penalized least squares: For some (semi-)norm ‖f‖,

f̂ = argmin
f

∑
i

(Yi− f(Xi))2 + λ‖f‖2.

• Leading case: Splines, e.g.,

f̂ = argmin
f

∑
i

(Yi− f(Xi))2 + λ

∫
f ′′(x)2dx.

• Can we think of penalized regressions in terms of a prior?

• If so, what is the prior distribution?
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The finite dimensional case

• Consider the finite dimensional analog to penalized regression:

θ̂ = argmin
t

n
∑
i=1

(Xi− ti)2 +‖t‖2C,

where
‖t‖2C = t′C−1t.

• We saw before that this is the posterior mean when
• X|θ ∼ N(θ , Ik),
• θ ∼ N(0,C).
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The reproducing property

• The norm ‖t‖C corresponds to the inner product

〈t,s〉C = t′C−1s.

• Let Ci = (Ci1, . . . ,Cik)′.

• Then, for any vector y,
〈Ci,y〉C = yi.

Practice problem
Verify this.
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Reproducing kernel Hilbert spaces

• Now consider a general Hilbert space of functions equipped with an inner
product 〈·, ·〉 and corresponding norm ‖ · ‖,

• such that for all x there exists an Mx such that for all f

f(x)≤Mx · ‖f‖.

• Read: “Function evaluation is continuous with respect to the norm ‖ · ‖.”

• Hilbert spaces with this property are called reproducing kernel Hilbert spaces
(RKHS).

• Note that L2 spaces are not RKHS in general!
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The reproducing kernel
• Riesz representation theorem:

For every continuous linear functional L on a Hilbert space H ,
there exists a gL ∈H such that for all f ∈H

L(f) = 〈gL, f〉.

• Applied to function evaluation on RKHS:

f(x) = 〈Cx, f〉

• Define the reproducing kernel:

C(x1,x2) = 〈Cx1 ,Cx2〉.

• By construction:
C(x1,x2) = Cx1(x2) = Cx2(x1)
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Practice problem
• Show that C(·, ·) is positive semi-definite, i.e.,

for any (x1, . . . ,xk) and (a1, . . . ,ak)

∑
i,j

aiajC(xi,xj)≥ 0.

• Given a positive definite kernel C(·, ·),
construct a corresponding Hilbert space.
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Solution

• Positive definiteness:

∑
i,j

aiajC(xi,xj) = ∑
i,j

aiaj〈Cxi ,Cxj〉

=

〈
∑
i
aiCxi ,∑

j
ajCxj

〉
=

∥∥∥∥∥∑i aiCxi

∥∥∥∥∥
2

≥ 0.

• Construction of Hilbert space: Take linear combinations of the functions C(x, ·)
(and their limits) with inner product〈

∑
i
aiC(xi, ·),∑

j
bjC(yj, ·)

〉
C

= ∑
i,j

aiajC(xi,yj).
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• Kolmogorov consistency theorem:
For a positive definite kernel C(·, ·)
we can always define a corresponding prior

f ∼ GP(0,C).

• Recap:
• For each regression penalty,
• when function evaluation is continuous w.r.t. the penalty norm
• there exists a corresponding prior.

• Next:
• The solution to the penalized regression problem
• is the posterior mean for this prior.
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Solution to penalized regression
• Let f be the solution to the penalized regression

f̂ = argmin
f

∑
i

(Yi− f(Xi))2 + λ‖f‖2C.

Practice problem
• Show that the solution to the penalized regression has the form

f̂(x) = c(x) · (C+nλ I)−1 ·Y,

where Cij = C(Xi,Xj) and c(x) = (C(X1,x), . . . ,C(Xn,x)).

• Hints
• Write f̂(·) = ∑ai ·C(Xi, ·) + ρ(·),
• where ρ is orthogonal to C(Xi, ·) for all i.
• Show that ρ = 0.
• Solve the resulting least squares problem in a1, . . . ,an. 31 / 36



Solution
• Using the reproducing property, the objective can be written as

∑
i

(Yi− f(Xi))2 + λ‖f‖2C

=∑
i

(Yi−〈C(Xi, ·), f〉)2 + λ‖f‖2C

=∑
i

(
Yi−

〈
C(Xi, ·),∑

j
aj ·C(Xj, ·) + ρ

〉)2

+ λ

∥∥∥∥∥∑i ai ·C(Xi, ·) + ρ

∥∥∥∥∥
2

C

=∑
i

(
Yi−∑

j
aj ·C(Xi,Xj)

)2

+ λ

(
∑
i,j

aiajC(xi,xj) +‖ρ‖2C

)
=‖Y−C ·a‖2 + λ

(
a′Ca+‖ρ‖2C

)
• Given a, this is minimized by setting ρ = 0.

• Now solve the quadratic program using first order conditions.
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Splines
• Now what about the spline penalty∫

f ′′(x)2dx?

• Is function evaluation continuous for this norm?

• Yes, if we restrict to functions such that f(0) = f ′(0) = 0.

• The penalty is a semi-norm that equals 0 for all linear functions.

• It corresponds to the GP prior with

C(x1,x2) =
x1x22
2 −

x32
6

for x2 ≤ x1.

• This is in fact the covariance of integrated Brownian motion!
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Practice problem
Verify that C is indeed the reproducing kernel for the inner product

〈f,g〉=
∫ 1

0
f ′′(x)g′′(x)dx.

• Takeaway: Spline regression is equivalent to the limit of a posterior mean
where the prior is such that

f(x) = A0 +A1 ·x+g

where
g∼ GP(0,C)

and
A∼ N(0,v · I)

as v→ ∞.
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Solution
• Have to show: 〈Cx,g〉= g(x)

• Plug in definition of Cx

• Last 2 steps: use integration by parts, use g(0) = g′(0) = 0

• This yields:

〈Cx,g〉=
∫

C′′x(y)g′′(y)dy

=
∫ x

0

(
xy2
2 −

y3
6

)′′
g′′(y)dy+

∫ 1

x

(
yx2
2 −

x3
6

)′′
g′′(y)dy

=
∫ x

0
(x−y)g′′(y)dy

= x · (g′(x)−g′(0)) +
∫ x

0
g′(y)dy− (yg′(y))

∣∣x
y=0

= g(x).
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