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Outline

6 equivalent representations of the posterior mean in the Normal-Normal
model.

e (Gaussian process priors for regression functions.

Reproducing Kernel Hilbert Spaces and splines.

Applications from my own work, to
1. Optimal treatment assignment in experiments.

2. Optimal insurance and taxation.
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Takeaways for this part of class

¢ |In a Normal means model with Normal prior, there are a number of equivalent
ways to think about regularization.

e Posterior mean, penalized least squares, shrinkage, etc.

e \We can extend from estimation of means to estimation of functions using
Gaussian process priors.

e (Gaussian process priors yield the same function estimates as penalized least
squares regressions.

e Theoretical tool: Reproducing kernel Hilbert spaces.

e Special case: Spline regression.
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Normal posterior means — equivalent representations

Gaussian process regression

Splines and Reproducing Kernel Hilbert Spaces
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Normal posterior means — equivalent representations
Setup

6 € Rk

X|60 ~ N(6.ly)

® [ oss

e Prior
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6 equivalent representations of the posterior mean

N

> »®

. Minimizer of weighted average risk

Minimizer of posterior expected loss
Posterior expectation

Posterior best linear predictor
Penalized least squares estimator

Shrinkage estimator
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1) Minimizer of weighted average risk

e Minimize weighted average risk (= Bayes risk),

e averaging loss L(@, 0)= (5 —0)? over both
1. the sampling distribution fy 9, and

2. weighting values of 8 using the decision weights (prior) mg.

e Formally,
8(-) = argmin /EG[L(t(X),B)]dn(G).
()
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2) Minimizer of posterior expected loss

e Minimize posterior expected loss,

e averaging loss L(§, 6) = (6 —6)2 over
1. just the posterior distribution 7g|x.

e Formally,
8(x) = argmin / L(t,8)dmo (8]x).
t
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3 and 4) Posterior expectation and
posterior best linear predictor

e Note that

(6) (%" ©))

e Posterior expectation: R
0 = E[6]X].

e Posterior best linear predictor:

6 =FE[6|X]=C-(C+)""-X.
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5) Penalization

e Minimize
1. the sum of squared residuals,

2. plus a quadratic penalty term.

e Formally,

—argmlnz — 1)+ |12,

e where
It)?=tct.
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6) Shrinkage

e Diagonalize C: Find
1. orthonormal matrix U of eigenvectors, and

2. diagonal matrix D of eigenvalues, so that

C=UDU'.
e Change of coordinates, using U:
X=UX
6=U0.

e Componentwise shrinkage in the new coordinates:

= d -
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Practice problem

Show that these 6 objects are all equivalent to each other.
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Solution (sketch)

1. Minimizer of weighted average risk = minimizer of posterior expected loss: See
decision slides.

2. Minimizer of posterior expected loss = posterior expectation:
e First order condition for quadratic loss function,

e pull derivative inside,
¢ and switch order of integration.

3. Posterior expectation = posterior best linear predictor:
® X and 6 are jointly Normal,

e conditional expectations for multivariate Normals are linear.

4. Posterior expectation = penalized least squares:
® Posterior is symmetric unimodal = posterior mean is posterior mode.

® Posterior mode = maximizer of posterior log-likelihood = maximizer of joint log
likelihood,

® since denominator fy does not depend on 6. -



Solution (sketch) continued

5. Penalized least squares = posterior expectation:

® Any penalty of the form
t'At

for A symmetric positive definite

e corresponds to the log of a Normal prior
6 ~N (O,A”) .

6. Componentwise shrinkage = posterior best linear predictor:
e Change of coordinates turns 6 = C-(C+/)~"- X into

8=D-(D+1)"-X.

® Diagonality implies

d.
D-(D+N"=di .
( +) Iag(d/+1>
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Gaussian processes for machine learning
Machine Learning < metrics dictionary

machine learning \ metrics
supervised learning | regression
features regressors
weights coefficients
bias intercept
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Gaussian prior for linear regression

Normal linear regression model:

Suppose we observe n i.i.d. draws of (Y, X;), where Y; is real valued and X; is a k
vector.

Yi=Xi-B+e

8i|XaB NN(Oacz)

B|X ~ N(0,9Q) (prior)

Note: will leave conditioning on X implicit in following slides.
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Practice problem (“weight space view”)
e Find the posterior expectation of 8

e Hints:
1. The posterior expectation is the maximum a posteriori.

2. The log likelihood takes a penalized least squares form.

e Find the posterior expectation of x -  for some (non-random) point x.
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Solution
e Joint log likelihood of Y, 3:

log(fyp) =log(fy|p) +log(fp)
—const. — % ;(Y,- —XiB)?— %/3’9*1 B.

e First order condition for maximum a posteriori:

dfyg 1 e
OZTB :g;(yi—xiﬁ)'xi—ﬁﬂ .

-1
= pB= (Zx;x,+62§2—1> Y XY
i

e Thus R N
E[x-B\Y]:x-B:x-(X’XJrG Q—) X'Y.
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Previous derivation required inverting k x k matrix.

Can instead do prediction inverting an n x n matrix.

n might be smaller than k if there are many “features.”

This will lead to a “function space view” of prediction.

Practice problem ("kernel trick”)
¢ Find the posterior expectation of

f(x)=E[YIX=x]=x-B.
e Wait, didn't we just do that?

® Hints:
1. Start by figuring out the variance / covariance matrix of (x- 3,Y).

2. Then deduce the best linear predictor of x- 8 given Y.
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Solution

e The joint distribution of (x-B,Y) is given by

x-B N(o xQx’ xQX'
Y AXQX XX+ 62,
e Denote C = XQX" and ¢(x) = xQX'.

e Then »
E[x-B|Y] = c(x)- <C+ Gzln> Y.

e Contrast with previous representation:

-1
E[x-B|Y] =x- (x’x+ 629_1) X'Y.
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General GP regression

e Suppose we observe ni.i.d. draws of (Y, X;), where Y; is real valued and X; is a k
vector.

Yi=f(Xj)+é&

&|X,f(-) ~ N(0,0?)

Prior: f is distributed according to a Gaussian process,
f|IX ~ GP(0,C),
where C is a covariance kernel,

Cov(f(x),F(x')|X) = C(x,x).

We will again leave conditioning on X implicit in following slides.
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Practice problem

e Find the posterior expectation of f(x).

* Hints:
1. Start by figuring out the variance / covariance matrix of (f(x),Y).

2. Then deduce the best linear predictor of f(x) given Y.
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Solution
e The joint distribution of (f(x),Y) is given by

(V) -mo (5 oon),
where

® c(x) is the n vector with entries C(x, X;),
® and C s the n x n matrix with entries C;; = C(X;, X;).
e Then, as before, 1
E[f(x)|Y] = c(x) - (c + Gzln) Y.
o Read: f(-) = E[f(-)|Y]
® is alinear combination of the functions C(-, X;)

* with weights (C+ crzln)f1 Y.
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Hyperparameters and marginal likelihood

e Usually, covariance kernel C(-,-) depends on on hyperparameters n.

e Example: squared exponential kernel with n = (I, 72)
(length-scale I, variance 72).

Cx,x') =12 exp (—%Hx—x’”z)

¢ Following the empirical Bayes paradigm, we can estimate n by maximizing the
marginal log likelihood:

n= argmax — 1| det(Cy +c?l)|— 2Y'(Cy +02)TY

e Alternatively, we could choose 1 using cross-validation or Stein's unbiased risk
estimate.
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Splines and Reproducing Kernel Hilbert Spaces

Penalized least squares: For some (semi-)norm ||f|],

= argmin Y (Y, — F(X;))? + A||f]|2.
f i

Leading case: Splines, e.g.,

F=argmin Y (¥ — f(X)))2 + A / £ (x)2dx.
f i

Can we think of penalized regressions in terms of a prior?

If so, what is the prior distribution?
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The finite dimensional case

e Consider the finite dimensional analog to penalized regression:

—argmlnz i—t) —i—HtH%,

where
|2 =t'Cct.

e \We saw before that this is the posterior mean when
o X|6 ~N(6,1I),

* 6~N(0,C).
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The reproducing property

e The norm ||t||c corresponds to the inner product
(t,s)c =t'C's.
° |letCi= (Cn,. ey C,'k)/,

e Then, for any vector y,
(Ci.y)e=Yi.

Practice problem

Verify this.
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Reproducing kernel Hilbert spaces

e Now consider a general Hilbert space of functions equipped with an inner
product (-,-) and corresponding norm || - ||,

e such that for all x there exists an My such that for all f
F(x) < My |f]].

]

¢ Read: "Function evaluation is continuous with respect to the norm || -

e Hilbert spaces with this property are called reproducing kernel Hilbert spaces
(RKHS).

e Note that L2 spaces are not RKHS in general!
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The reproducing kernel

e Riesz representation theorem:

For every continuous linear functional L on a Hilbert space .77,

there exists a g, € . such that for all f € 7
L(f) = (9..f).
e Applied to function evaluation on RKHS:
f(x) = (Cx,f)
e Define the reproducing kernel:
C(x1,X2) = (Cx,,Cx,).

e By construction:
C(x1,X2) = Cx; (X2) = Cx,(x1)
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Practice problem

e Show that C(-,-) is positive semi-definite, i.e.,
forany (xq,...,Xx) and (a1,...,ax)

Za,-ajC(x,,xj) > 0.
ij

e Given a positive definite kernel C(,-),
construct a corresponding Hilbert space.
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Solution

e Positive definiteness:

ZaiajC(xi,xj) = Zaiaj<cx,-7 ij>
i iy

2
>0.

- <;aicxi,12ajcxj> = H;aicx,-

e Construction of Hilbert space: Take linear combinations of the functions C(x, )
(and their limits) with inner product

<ZaiC(Xiv'),ijC(yj'»')> =Y a;a;C(x;.;)-
j ]

c
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e Kolmogorov consistency theorem:
For a positive definite kernel C(-, -)
we can always define a corresponding prior

f ~GP(0,C).
e Recap:
e For each regression penalty,
¢ when function evaluation is continuous w.r.t. the penalty norm
® there exists a corresponding prior.

e Next:
® The solution to the penalized regression problem

® s the posterior mean for this prior.
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Solution to penalized regression
e Let f be the solution to the penalized regression

f =argmin Y(Y;— F(X)))? + A||f[[3.
f i

Practice problem

e Show that the solution to the penalized regression has the form
f(x)=c(x)-(C+nAn"-Y,

where Cj = C(X;,X;) and ¢(x) = (C(X1,x),...,C(Xp,X)).

* Hints
* Write f(-) = Xa;- C(Xi,-) +p(").
® where p is orthogonal to C(X;,-) for all i.

e Show that p = 0.

® Solve the resulting least squares problemin aq,...,an. 31/36



Solution
e Using the reproducing property, the objective can be written as

Z(Y' F(X)? + A1
—Z ).F)2+ANfIE

2
=L (Y"_ <C(Xi")vZaf-C(ij)+p>> +A
I j

2
—Z( Za, C(X,,X)) +A<Zaia,~6(x,-,xj)+llp||%)
i

=HY—C-a||2+/1(a Ca+p|2)

2

Zai C(XI7)+p
i

C

e Given a, this is minimized by setting p = 0.

e Now solve the quadratic program using first order conditions.
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Splines

e Now what about the spline penalty
/ £ (x)2dx?

Is function evaluation continuous for this norm?

Yes, if we restrict to functions such that f(0) = f/(0) = 0.

The penalty is a semi-norm that equals 0 for all linear functions.

It corresponds to the GP prior with

NN

X1X
C(x1,X2) = 1?*

o) ‘Nxoo

for x, < Xq.

e This is in fact the covariance of integrated Brownian motion!
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Practice problem
Verify that C is indeed the reproducing kernel for the inner product

(t.9)= [ /00" ).

e Takeaway: Spline regression is equivalent to the limit of a posterior mean
where the prior is such that

f(x)=Ao+A1-x+g

where
g~ GP(0,C)

and
A~N(0,v-I)

aS VvV — oo,
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Solution
e Have to show: (Cyx,g) = g(x)

Plug in definition of Cx

Last 2 steps: use integration by parts, use g(0) =¢’(0) =0

This yields:

(€r9) = [ CLNG" )y

[(LE) vwar [ (1) do
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