Foundations of machine learning Fairness and machine learning

Maximilian Kasy

Department of Economics, University of Oxford

Hilary term 2023

Outline

- Targeted treatment assignment and supervised learning.
- Fairness as predictive parity and taste-based discrimination.
- Limitations of this notion of fairness.
- Alternative notions of fairness / discrimination.
- Social welfare as a unifying framework for many theories of justice.
- The causal impact of algorithms on inequality / social welfare.
- Case study: Predictive incarceration.

Takeaways for this part of class

- Public debate and the computer science literature: **Fairness** of algorithms, understood as the absence of **discrimination**.
- We argue: Leading definitions of fairness have three limitations:
 - 1. They legitimize inequalities justified by "merit."
 - 2. They are narrowly bracketed; only consider differences of treatment within the algorithm.
 - 3. They only consider between-group differences.
- Two alternative perspectives:
 - 1. What is the causal impact of the introduction of an algorithm on **inequality**?
 - 2. Who has the **power** to pick the objective function of an algorithm?

Fairness in algorithmic decision making – Setup

Binary treatment W, treatment return M (heterogeneous), treatment cost c.
 Decision maker's objective

$$\mu = E[W \cdot (M - c)].$$

- All expectations denote averages across individuals (not uncertainty).
- *M* is unobserved, but predictable based on features *X*. For m(x) = E[M|X = x], the optimal policy is

 $w^*(x) = \mathbf{1}(m(X) > c).$

- Bail setting for defendants based on predicted recidivism.
- Screening of job candidates based on predicted performance.
- · Consumer credit based on predicted repayment.
- Screening of tenants for housing based on predicted payment risk.
- Admission to schools based on standardized tests.

Fairness and discrimination

Inequality and social welfare

Case study

References

Definitions of fairness

- Most definitions depend on three ingredients.
 - 1. Treatment W (job, credit, incarceration, school admission).
 - 2. A notion of merit *M* (marginal product, credit default, recidivism, test performance).
 - 3. Protected categories A (ethnicity, gender).
- I will focus initially on the following definition of fairness:

 $\pi = E[M|W = 1, A = 1] - E[M|W = 1, A = 0] = 0$

"Average merit, among the treated, does not vary across the groups a."

This is called "predictive parity" in machine learning, the "hit rate test" for "taste based discrimination" in economics.

• "Fairness in machine learning" literature: Constrained optimization.

$$w^*(\cdot) = \operatorname*{argmax}_{w(\cdot)} E[w(X) \cdot (m(X) - c)]$$
 subject to $\pi = 0$.

Fairness and D's objective

Observation

Suppose that *W*, *M* are binary ("classification"), and that

1. m(X) = M (perfect predictability), and

2. $w^*(x) = \mathbf{1}(m(X) > \mathbf{c})$ (unconstrained maximization of \mathscr{D} 's objective μ). Then $w^*(x)$ satisfies predictive parity, i.e., $\pi = \mathbf{0}$.

In words:

- If \mathscr{D} is a firm that is maximizing profits and observes everything then their decisions are fair by assumption.
 - No matter how unequal the resulting outcomes within and across groups.
- Only deviations from profit-maximization are "unfair."

Three normative limitations of "fairness" as predictive parity

1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?

Three normative limitations of "fairness" as predictive parity

1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?

2. They are narrowly bracketed.

Inequality in **W** in the algorithm, instead of some outcomes **Y** in a wider population.

Three normative limitations of "fairness" as predictive parity

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- 2. They are **narrowly bracketed**.

Inequality in W in the algorithm, instead of some outcomes Y in a wider population.

3. Fairness-based perspectives **focus on categories** (protected groups) and ignore within-group inequality.

Alternative measures of fairness (1)

Measures that share the same limitations:

• Equality of true positives:

$$E[W|M = 1, A = 1] - E[W|M = 1, A = 0].$$

• Equality of false positives:

$$E[W|M = 0, A = 1] - E[W|M = 0, A = 0].$$

• Balance for the negative class:

$$E[M|W = 0, A = 1] - E[M|W = 0, A = 0]$$

(Like predictive parity, but for W = 0.)

Alternative measures of fairness (2)

Measures which share only some of these limitations:

• Disparate impact and demographic parity:

$$\frac{E[W|A=1]}{E[W|A=0]}, \qquad E[W|A=1] - E[W|A=0].$$

• Conditional statistical parity:

$$E[W|A = 1, X' = x'] - E[W|A = 0, X' = x']$$

for a subset of features X' considered "legitimate" sources of inequality. (Cf. Oaxaca-Blinder decompositions.)

• Individual fairness:

$$E[W|X = x_i] - E[W|X = x_j] \text{ for } d(i,j) \approx 0,$$

for a measure of distance d(i,j) between individuals.

Practice problem

- Which of these measures of fairness do you find more or less appealing?
- Why? For which contexts or applications?

Fairness and discrimination

Inequality and social welfare

Case study

References

Social welfare

- The framework of fairness / bias / discrimination contrasts with perspectives focused on *consequences for social welfare*.
- Common presumption for most theories of justice:

Normative statements about society are based on statements about individual welfare

- Formally:
 - Individuals *i* = 1, ..., *n*
 - Individual *i*'s welfare Y_i
 - Social welfare as function of individuals' welfare

$$SWF = F(Y_1,\ldots,Y_n).$$

Practice problem

- Who is to be included among *i* = 1,...,*n*?
 - All citizens? All residents? All humans on earth?
 - Future generations? Animals?

• How to measure individual welfare Y_i?

- Opportunities or outcomes?
- Utility? Resources? Capabilities?
- How to aggregate to SWF? How much do we care about
 - Trevon vs. Emily, Sophie vs. José?
 - Millionaires vs. homeless people?
 - Sick vs. healthy people?
 - Groups that were victims of historic injustice?

The impact on inequality or welfare as an alternative to fairness

• Outcomes are determined by the **potential outcome equation**

 $Y = W \cdot Y^1 + (1 - W) \cdot Y^0.$

• The **realized outcome** distribution is given by

$$p_{Y,X}(y,x) = \left[p_{Y^0|X}(y,x) + w(x) \cdot \left(p_{Y^1|X}(y,x) - p_{Y^0|X}(y,x)\right)\right] \cdot p_X(x).$$

• What is the impact of $w(\cdot)$ on a **statistic** v?

$$v = v(p_{Y,X}).$$

Examples: Variance, quantiles, between group inequality.

• Cf. Distributional decompositions in labor economics!

When fairness and equality are in conflict

- Fairness is about **treating** people of the same "**merit**" independently of their **group** membership.
- Equality is about the (counterfactual / causal) **consequences** of an algorithm for the distribution of **welfare** of different **people**.

Examples when they are in conflict:

- Increased surveillance / better prediction algorithms: Lead to treatments more aligned with "merit" Good for fairness, bad for equality.
- 2. Affirmative action / **compensatory interventions** for pre-existing inequalities: Bad for fairness, good for equality.

Influence function approximation of the statistic v

$$v(p_{Y,X}) - v(p_{Y,X}^*) = E[IF(Y,X)] + o(||p_{Y,X} - p_{Y,X}^*||).$$

• IF(Y,X) is the influence function of $v(p_{Y,X})$.

Formally: The Riesz representer of the Fréchet derivative of v.

• The expectation averages over the distribution $p_{Y,X}$.

The impact of marginal policy changes on profits, fairness, and inequality

Proposition

Consider a family of assignment policies $w(x) = w^*(x) + \varepsilon \cdot dw(x)$. Then

 $\partial_{\varepsilon}\mu = E[dw(X) \cdot I(X)], \qquad \partial_{\varepsilon}\pi = E[dw(X) \cdot p(X)], \qquad \partial_{\varepsilon}v = E[dw(X) \cdot n(X)],$

The impact of marginal policy changes on profits, fairness, and inequality

Proposition

Consider a family of assignment policies $w(x) = w^*(x) + \varepsilon \cdot dw(x)$. Then

$$\partial_{\varepsilon}\mu = E[dw(X) \cdot I(X)], \qquad \partial_{\varepsilon}\pi = E[dw(X) \cdot p(X)], \qquad \partial_{\varepsilon}v = E[dw(X) \cdot n(X)],$$

where

$$\begin{split} I(X) &= E[M|X = x] - c, \\ p(X) &= E\left[(M - E[M|W = 1, A = 1]) \cdot \frac{A}{E[WA]} \\ &- (M - E[M|W = 1, A = 0]) \cdot \frac{(1 - A)}{E[W(1 - A)]} \Big| X = x \right], \\ n(x) &= E\left[IF(Y^1, x) - IF(Y^0, x) | X = x \right]. \end{split}$$

Uses of the proposition

- 1. Elucidate the **tension** between objectives.
 - Profits vs. fairness vs. equality vs. welfare?
 - Suppose π < 0, n(x) > 0 is positive, while p(x) < 0.
 Then increasing w(x) is good for welfare and bad for fairness.
 - ⇒ Characterizes which parts of the feature space drive the tension between alternative objectives.

Uses of the proposition

- 1. Elucidate the **tension** between objectives.
 - Profits vs. fairness vs. equality vs. welfare?
 - Suppose π < 0, n(x) > 0 is positive, while p(x) < 0.
 Then increasing w(x) is good for welfare and bad for fairness.
 - ⇒ Characterizes which parts of the feature space drive the tension between alternative objectives.
- 2. Solve for optimal assignment subject to constraints.
 - E.g. maximize μ subject to $\pi = 0$.
 - Then $w(x) = \mathbf{1}(l(x) > \lambda p(x))$.

Uses of the proposition 1, continued

3. Power and inverse welfare weights

- For a given $w(\cdot)$, what objective is implicitly maximized?
- What are the weights for different individuals that rationalize $w(\cdot)$?

Uses of the proposition 1, continued

3. Power and inverse welfare weights

- For a given $w(\cdot)$, what objective is implicitly maximized?
- What are the weights for different individuals that rationalize $w(\cdot)$?

4. Algorithmic auditing.

- Similar to distributional decompositions in labor economics.
- Cf. Fortin and Lemieux (1997); Firpo et al. (2009).

Power

- Both fairness and equality are about differences between people who are **being treated**.
- Elephant in the room:
 - Who is on the **other side** of the algorithm?
 - Who gets to be the decision maker \mathscr{D} who gets to pick the objective function μ ?
- Political economy perspective:
 - Ownership of the means of prediction.
 - Data and algorithms.

Fairness and discrimination

Inequality and social welfare

Case study

References

Case study

- Compas risk score data for recidivism.
- From Pro-Publica's reporting on algorithmic discrimination in sentencing.

Mapping our setup to these data:

- A: race (Black or White),
- W: risk score exceeding 4,
- M: recidivism within two years,
- Y: jail time,
- X: race, sex, age, juvenile counts of misdemeanors, fellonies, and other infractions, general prior counts, as well as charge degree.

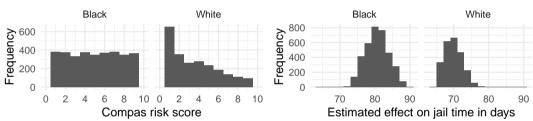
Counterfactual scenarios

Compare three scenarios:

- 1. "Affirmative action:" Adjust risk scores ± 1 , depending on race.
- 2. Status quo.
- 3. Perfect predictability: Scores equal **10** or **1**, depending on recidivism in 2 years.

For each: Impute counterfactual

- W: Counterfactual score bigger than 4.
- **Y**: Based on a causal-forest estimate of the impact on **Y** of risk scores, conditional on the covariates in **X**.
- This relies on the assumption of conditional exogeneity of risk-scores given *X*. Not credible, but useful for illustration.



Compas risk scores

Estimated effect of scores

Table: Counterfactual scenarios, by group

	Black			White		
Scenario	(Score>4)	Recid (Score>4)	Jail time	(Score>4)	Recid (Score>4)	Jail time
Aff. Action	0.49	0.67	49.12	0.47	0.55	36.90
Status quo	0.59	0.64	52.97	0.35	0.60	29.47
Perfect predict.	0.52	1.00	65.86	0.40	1.00	42.85

Table: Counterfactual scenarios, outcomes for all

Scenario	Score>4	Jail time	IQR jail time	SD log jail time
Aff. Action	0.48	44.23	23.8	1.81
Status quo	0.49	43.56	25.0	1.89
Perfect predict.	0.48	56.65	59.9	2.10

References

- Pessach, D. and Shmueli, E. (2020). Algorithmic fairness. arXiv preprint arXiv:2001.09784
- *Kasy, M. and Abebe, R. (2021). Fairness, equality, and power in algorithmic decision making.* ACM Conference on Fairness, Accountability, and Transparency.
- Kasy, M. (2016). Empirical research on economic inequality. http://inequalityresearch.net/
- *Roemer, J. E. (1998).* Theories of distributive justice. *Harvard University Press, Cambridge.*