Foundations of machine learning Debiased Machine Learning

Maximilian Kasy

Department of Economics, University of Oxford

Hilary term 2023

Outline

- Supervised machine learning as a first stage estimator in econometrics.
- Two problems that arise using a plugin approach.
- Two solutions orthogonalized scores and sample splitting.
- How to derive orthogonalized scores.
- Examples.
- Asymptotics.

Takeaways for this part of class

- Supervised learning can be useful as a first-stage in econometric estimation problems.
- But simple plug-in estimators are often poorly behaved.
- Well-behaved estimators can be constructed using
 - 1. Orthogonal scores, and
 - 2. Sample splitting and averaging.
- Examples:
 - 1. Partial linear regression.
 - 2. Average treatment effect und unconfoundedness.
 - 3. Local average treatment effect under conditional instrument exogeneity.

Examples

Two problems

Orthogonal scores
Examples

Asymptotics

References

- Many settings in econometrics:
 - The object of interest is low-dimensional (or real-valued),
 - but high-dimensional parameters are of intermediate relevance.
- General two stage structure:
 - 1. The high-dimensional g_0 is given by the solution to some supervised learning problem.
 - 2. The low-dimensional parameter of interest θ_0 then solves

$$E[\phi(W,\theta_0,g_0)]=0.$$

ullet Can we estimate g_0 using supervised machine learning, and plug it in?

Plugin estimation

- Most obvious estimator of θ_0 :
 - 1. First estimate g_0 using some supervised ML method.
 - 2. Then plug in the estimate and solve for $\hat{\theta}$ in

$$E_n\left[\phi(W_i,\hat{\theta},\hat{g})\right]=0.$$

- This causes two problems, however:
 - 1. Bias of \hat{g} might distort $\hat{\theta}_0$.
 - 2. The statistical dependence of \hat{g} and W_i might distort $\hat{\theta}_0$.
- Both of these issues might cause large biases.
- Let us consider some examples, before solving these problems.

Example 1: Partially linear regression

Model:

$$Y = D \cdot \theta_0 + g_0(X) + U, \qquad \qquad E[U|X,D] = 0.$$

- Plugin estimator:
 - 1. Estimate g_0 , using some supervised ML method.
 - 2. Then solve $E_n[\phi(W_i, \theta_0, \hat{g})] = 0$, where E_n is the sample average across observations W_i , and

$$\phi(W,\theta,g)=(Y-D\cdot\theta-g(X))\cdot D,$$

Thus

$$\hat{\theta} = E_n \left[D_i^2 \right]^{-1} \cdot E_n [D_i \cdot (Y_i - g(X_i))]$$

Example 2: Average treatment effect

Model:

$$Y = g_0(D,X) + U$$
 $E[U|X,D] = 0$
 $\theta_0 = E[g_0(1,X) - g_0(0,X)].$

- Under unconfoundedness, θ_0 is the average treatment effect.
- Plugin estimator:
 - 1. Estimate g_0 , using some supervised ML method.
 - 2. Then solve $E_n[\phi(W_i, \theta_0, \hat{g})] = 0$, where

$$\phi(W,\theta,g)=g(1,X)-g(0,X)-\theta.$$

Example 3: Local average treatment effect

• Model:

$$Y = g_0^{y}(Z,X) + U, \quad D = g_0^{d}(Z,X) + V, \quad E[(U,V)|X,Z] = 0,$$

$$\theta_0 = \frac{E[g_0^{y}(1,X) - g_0^{y}(0,X)]}{E[g_0^{d}(1,X) - g_0^{d}(0,X)]}.$$

- Under conditional instrument exogeneity, exclusion restriction, θ_0 is the local average treatment effect.
- Plugin estimator:
 - 1. Estimate g_0 , using some supervised ML method.
 - 2. Then solve $E_n[\phi(W_i, \theta_0, \hat{g})] = 0$, where

$$\phi(W, \theta, g) = g^{y}(1, X) - g^{y}(0, X) - (g^{d}(1, X) - g^{d}(0, X)) \cdot \theta.$$

Examples

Two problems

Orthogonal scores

Examples

Asymptotics

References

Approximating $\hat{\theta}$

 Telescope sum; Taylor approximation; approximating sample averages by expectations:

$$0 = E_n \left[\phi(W_i, \hat{\theta}, \hat{g}) \right] = E_n \left[\phi(W_i, \hat{\theta}, \hat{g}) - \phi(W_i, \hat{\theta}, g_0) \right]$$

$$+ E_n \left[\phi(W_i, \hat{\theta}, g_0) - \phi(W_i, \theta_0, g_0) \right] + E_n \left[\phi(W_i, \theta_0, g_0) \right]$$

$$\approx E \left[\partial_g \phi(W_i, \theta_0, g_0) \cdot (\hat{g} - g_0) \right]$$

$$+ E \left[\partial_\theta \phi(W_i, \theta_0, g_0) \right] \cdot (\hat{\theta} - \theta_0) + E_n \left[\phi(W_i, \theta_0, g_0) \right].$$

• Solving for $\hat{\theta} - \theta_0$:

$$egin{aligned} (\hat{ heta}- heta_0) &pprox E\left[\partial_{ heta}\phi(W_i, heta_0,g_0)
ight]^{-1} \cdot \left[E_n\left[\phi(W_i, heta_0,g_0)
ight] + \\ &+ E\left[\partial_{g}\phi(W_i, heta_0,g_0) \cdot (\hat{g}-g_0)
ight] \end{aligned}$$

• We can further decompose the last term, which is the cause of bias:

$$\begin{split} & E\left[\partial_{g}\phi(W_{i},\theta_{0},g_{0})\cdot(\hat{g}-g_{0})\right] \\ =& E\left[\partial_{g}\phi(W_{i},\theta_{0},g_{0})\right]\cdot(E[\hat{g}]-g_{0}) + E\left[\partial_{g}\phi(W_{i},\theta_{0},g_{0})\cdot(\hat{g}-E[\hat{g}])\right] \end{split}$$

Practice problem

Write out this decomposition for average treatment effect estimation and the plugin estimator.

- 1. Recall what is ϕ and g here.
- 2. What is $\partial_{\theta} \phi$, what is $\partial_{\alpha} \phi$?
- 3. What do we get for the red and magenta terms?

Problem 1: Bias in the first stage

- As we discussed previously, ML estimators use regularization, and therefore are **biased**: $E[\hat{g}] \neq g_0$.
- Suppose however that we had a score function which satisfies "Neyman orthogonality:"

$$E[\partial_g \phi(W_i, \theta_0, g_0)] = 0.$$

Then

$$E[\partial_g \phi(W_i, \theta_0, g_0)] \cdot (E[\hat{g}] - g_0) = 0.$$

• \Rightarrow Bias of \hat{g} does not matter to first order.

Problem 2: Statistical dependence of first stage and data

- In general, W_i and \hat{g} are not statistically independent, and \hat{g} has non-negligible **variance**.
- Therefore $E[\partial_g \phi(W_i, \theta_0, g_0) \cdot (\hat{g} E[\hat{g}])] \neq 0$.
- Suppose however we used sample splitting:
 - 1. Estimate \hat{g} on one part of the data.
 - 2. Average $\phi(W_i, \hat{\theta}, \hat{g})$ over the remaining data.
- Then this term automatically vanishes!

Debiased Machine Learning

Combining these two ideas: (Definition 3.2 in the paper.)

- 1. Start with an estimation problem of the form $E[\phi(W, \theta_0, g_0)] = 0$.
- 2. Derive an orthogonal Neyman score ψ , which satisfies

$$egin{aligned} E[\psi(W, heta_0,\eta_0)] &= 0, \ E\left[\partial_\eta \psi(W_i, heta_0,\eta_0)
ight] &= 0. \end{aligned}$$

We will discuss next how to do this.

- 3. Split the sample into K subsamples I_k . Estimate $\hat{\eta}_k$ based on I_k^c . Denote $E_{n,k}$ the sample average over I_k .
- 4. Estimate θ by solving

$$\sum_{k=1}^k E_{n,k} \left[\psi(W, \hat{\theta}, \hat{\eta}_k) \right] = 0.$$

Examples

Two problems

Orthogonal scores

Examples

Asymptotics

References

How to derive orthogonal scores

Suppose that

$$(\theta_0, \beta_0) = \operatorname*{argmax}_{\theta, \beta} E[L(W, \theta, \beta)].$$

- β takes the role of g here. We focus on the parametric case for ease of exposition.
- Two approaches to deriving an orthogonal score:
 - 1. Construction from moment functions.
 - 2. Concentrating out.

Construction from moment functions

Suppose that

$$(\theta_0, \beta_0) = \underset{\theta, \beta}{\operatorname{argmax}} E[L(W, \theta, \beta)],$$

and thus

$$E[\partial_{\theta}L(W,\theta_{0},\beta_{0})]=0, \hspace{1cm} E[\partial_{\beta}L(W,\theta_{0},\beta_{0})]=0.$$

Define

$$\psi(W,\theta,\eta) = \partial_{\theta}L(W,\theta,\beta) - \mu \cdot \partial_{\beta}L(W,\theta,\beta),$$

where $\eta = (\mu, \beta)$, and μ_0 solves

$$\partial_{\beta} E[\partial_{\theta} L(W, \theta_0, \beta_0)] - \mu_0 \cdot \partial_{\beta} E[\partial_{\beta} L(W, \theta_0, \beta_0)] = 0.$$

Then

$$E[\psi(W, \theta_0, \eta_0)] = 0,$$

 $E[\partial_{\eta} \psi(W_i, \theta_0, \eta_0)] = 0.$

Construction by concentrating out

Suppose again that

$$(\theta_0, \beta_0) = \operatorname*{argmax}_{\theta, \beta} E[L(W, \theta, \beta)].$$

Define

$$\begin{split} \beta(\theta) &= \mathop{\mathsf{argmax}}_{\beta} E[L(W,\theta,\beta)], \\ \psi(W,\theta,\eta) &= \partial_{\theta} \left(L(W,\theta,\beta(\theta)) \right) \\ &= \partial_{\theta} L(W,\theta,\beta) + \partial_{\theta} \beta(\theta) \cdot \partial_{\beta} L(W,\theta,\beta), \\ \text{where } \eta = (\beta,\partial_{\theta}\beta(\theta)). \end{split}$$

• Then, again

$$E[\psi(W, \theta_0, \eta_0)] = 0,$$

 $E[\partial_{\eta} \psi(W_i, \theta_0, \eta_0)] = 0.$

Example 1: Partially linear regression

Recall the model

$$Y = D \cdot \theta_0 + g_0(X) + U, \qquad \qquad E[U|X,D] = 0.$$

Define

$$m_0(X)=E[D|X].$$

Then

$$\psi(W,\theta,\eta) = (Y - D \cdot \theta - g(X)) \cdot (D - m(X))$$

satisfies the orthogonality condition.

• In the first stage, we need to estimate $g_0(X)$ and m(X).

Example 2: Average treatment effect

Recall the model

$$Y = g_0(D, X) + U$$
 $E[U|X, D] = 0$
 $\theta_0 = E[g_0(1, X) - g_0(0, X)].$

Define

$$m_0(X)=E[D|X].$$

Then

$$\psi(W, \theta, \eta) = (g(1, X) - g(0, X)) + \left(\frac{DY}{m(X)} - \frac{(1 - D)Y}{1 - m(X)}\right) - \left(\frac{Dg(1, X)}{m(X)} - \frac{(1 - D)g(0, X)}{1 - m(X)}\right) - \theta$$

satisfies the orthogonality condition.

• This is the famous "doubly robust" estimation approach.

Examples

Two problems

Orthogonal scores
Examples

Asymptotics

References

Asymptotics for debiased ML estimators

Theorem 3.3.

- Assume a number of regularity conditions.
- Consider a Debiased Machine Learning estimator.
- Then

$$\sqrt{n}(\hat{\theta}-\theta)\sim^{A}N(0,\sigma^{2}),$$

where

$$\sigma^2 = J^{-1} \cdot \mathsf{Var}(\psi(W, \theta_0, \eta_0)) \cdot J^{-1},$$

for

$$J = \partial_{\theta} E[\psi(W, \theta_0, \eta_0)].$$

Intuition of proof

Recall our earlier expansion

$$(\hat{\theta} - \theta_0) \approx E[\partial_{\theta} \psi(W_i, \theta_0, \eta_0)]^{-1} \cdot [E_n[\psi(W_i, \theta_0, \eta_0)] + E[\partial_{\eta} \psi(W_i, \theta_0, \eta_0) \cdot (\hat{\eta} - \eta_0)]].$$

- Using the Debiased Machine Learning approach, we have killed the blue term.
- The other terms give asymptotic normality and the variance by standard arguments.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68.