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Outline

e Setup: the Normal means model
X~ N(ealk)

and the canonical estimation problem with loss || — 2.

The James-Stein (JS) shrinkage estimator.

Three ways to arrive at the JS estimator (almost):
1. Reverse regression of 6; on X;.

2. Empirical Bayes: random effects model for 6.

3. Shrinkage factor minimizing Stein's Unbiased Risk Estimate.

Proof that JS uniformly dominates X as estimator of 6.

The Normal means model as asymptotic approximation.
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Takeaways for this part of class

Shrinkage estimators trade off variance and bias.

In multi-dimensional problems, we can estimate the optimal degree of
shrinkage.

Three intuitions that lead to the JS-estimator:
1. Predict 6; given X; = reverse regression.

2. Estimate distribution of the 8; = empirical Bayes.

3. Find shrinkage factor that minimizes estimated risk.

Some calculus allows us to derive the risk of JS-shrinkage
= better than MLE, no matter what the true 9 is.

The Normal means model is more general than it seems: large sample
approximation to any parametric estimation problem.
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The Normal means model
Setup

e 9 cRK

&~ N(O,Ik)

X=0+¢~N(8,I)

Estimator: 6 = 5(X)

e Loss: squared error

Risk: mean squared error
R(8,6)=Eo |L(8,6)| = Lo |(Bi—6)?].
i
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Two estimators
e Canonical estimator: maximum likelihood,
/G\ML - X

e Risk function

R(6"™,0) =Y Eo [e?] =k.

i

e James-Stein shrinkage estimator

8% = <1 —(k_z)/k> X,

)(2
e Celebrated result: uniform risk dominance; for all 8

~JS

R(6”,0)<RE™.0)=k.
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First motivation of JS: Regression perspective

e We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

e Consider estimators of the form

or

* How to choose c or (a,b)?
e Two particular possibilities:
1. Maximum likelihood: ¢ =1

2. James-Stein: ¢ = (1 - (k;Tzz)/k>
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Practice problem (Infeasible estimator)
e Suppose you knew Xy, ..., X, as well as 6,..., 6,

e but are constrained to use an estimator of the form 5, =c-X.
1. Find the value of ¢ that minimizes loss.

2. For estimators of the form 5, =a+b-X; find the values of a and b that
minimize loss.
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Solution

First problem:
c* =argmin ) (c-X;— 6))?
c 7

Least squares problem!

First order condition:
0= Z(C* Xi— 9,') - Xj.

]

Solution
_ Y Xi6;

Xz

I

*
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Solution continued

e Second problem:
(a*,b*) =argmin Y (a+b-X;— 6;)>

ab
e | east squares problem again!

e First order conditions:

0 :Z(a*er* -X,-—G,-)

I

0 :Z(a*+b* Xi—6) - X;.

I

e Solution _ _
b — ):(Xi—x)'(fiz—Q) _ s¥’ a1 b X=0
Yi(Xi —X) Sk
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Regression and reverse regression

e Recall X;j = 6;+¢, E[S,"G,‘] =0, Var(e,-) =1
e Regression of X on 6: Slope

S S
2 =1+ =,
St St

For optimal shrinkage, we want to predict 6 given X, not the other way around!

Reverse regression of 6 on X: Slope

2
Sxo  S5+Sco S5
s S3+2s9+SZ  s2+1

Interpretation: “signal to (signal plus noise) ratio” < 1.
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lllustration
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Expectations

Practice problem

1. Calculate the expectations of

and

2. Calculate the expected numerator and denominator of ¢* and b*.
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Solution
« EX]=6

E[X2] = 62 41

E[s2]= 02— +1=52+1

e ¢* = (X0)/(X2), and E[X6] = 62. Thus

92
R ——.
62 +1
* b* =sxg/s%, and E[sxs] = 3. Thus
. S5
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Feasible analog estimators

Practice problem

Propose feasible estimators of ¢* and b*.
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A solution

e Recall:
o ot — X6

X2
® 9e~0e2~1.

® Since Xj = 6+ ¢, L . .
X0=X2—Xe=X2—-0e—e2~X?2—1

e Thus:

. X2—0e—g2 X2-1 1T
X2 X2 X2
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Solution continued

e Similarly:

S
o b=
Sx

° 398%0,33'&*1.

® Since X;=06;+¢,

2 2 2 .2
Sxo = Sx —Sxe =Sy —Sge —Sg ~ Sy — 1

e Thus:

2 2 &2
pr_ Sx—Soe =S sy—1

2
Sx

2
Sx
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James-Stein shrinkage
¢ \We have almost derived the James-Stein shrinkage estimator.

¢ Only difference: degree of freedom correction

e Optimal corrections:

s _ 1 (k=2)/k
— =
and (k—3)/k
pS =11 V7
s

e Note: if =0, then ¥;X? ~ x2.
e Then, by properties of inverse x?2 distributions
1

X2 k-2

sothat E [¢¥S] = 0.
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Positive part JS-shrinkage

* The estimated shrinkage factors can be negative.

c’S < 0iff

Y X7 <k-—2.
i

Better estimator: restrict to ¢ > 0.

“Positive part James-Stein estimator:”

§JS+ = max <0,1 — (k—2)/k) -X.
X2

Dominates James-Stein.

We will focus on the JS-estimator for analytical tractability.
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Second motivation of JS: Parametric empirical Bayes
Setup

As before: § € Rk

X|6 ~ N(6,1¢)

Loss L(6,0) = Xi(6i— 6)2

Now add an additional conceptual layer:
Think of 6; as i.i.d. draws from some distribution.

“Random effects vs. fixed effects”

Let's consider 6; ~@ N(0, 72),
where 72 is unknown.
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Practice problem

e Derive the marginal distribution of X given 72.
e Find the maximum likelihood estimator of 72.
e Find the conditional expectation of 8 given X and 2.

e Plug in the maximum likelihod estimator of 72 to get the empirical Bayes
estimator of 6.
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Solution

e Marginal distribution:
X~N<0,(12+1)-Ik)

e Maximum likelihood estimator of 72:

5 1 2 X?
72 :arggnax _Ez,: <Iog(r +1)+ (72_’”)>
=X2 -1
e Conditional expectation of 6; given X;, 72:
~ COV(G,',X,') 72
=~y X=X
Var(Xj) 7241

e Pluggingin 72:
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General parametric empirical Bayes
Setup

e Data X,
parameters 6,
hyper-parameters n

e Likelihood
X|0,1n ~ fxe
e Family of priors
9|T7 ~ fem

e Limiting cases:
® 0 =n: Frequentist setup.

® 1 has only one possible value: Bayesian setup.
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Empirical Bayes estimation

e Marginal likelihood

fX\n(X’n)Z/fX|e(X|9)fe|n(9!n)d6.

Has simple form when family of priors is conjugate.

e Estimator for hyper-parameter n: marginal MLE
n= argglax fxin (XI1)-

e Estimator for parameter 6: pseudo-posterior expectation

0 =E[0]X =x,n =1].
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Third motivation of JS: Stein's Unbiased Risk Estimate

Stein’'s lemma (simplified version):

Suppose X ~ N(6,1y).

Suppose g(-) : RK — R is differentiable and E[|g’ (X)|] < o°.

Then
E[(X —6)-g(X)] = E[Vg(X)].

e Note:
® 0 shows up in the expression on the LHS, but not on the RHS

® Unbiased estimator of the RHS: Vg(X)
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Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ¢(-) satisfies

¢'(X) = —x-9(x).

2. Consider each component i separately and use integration by parts.

24/ 46



Solution

e Recall that ¢(x) = (27) 795 - exp(—x2/2).
Differentiation immediately yields the first claim.

e Consider the component i = 1; the others follow similarly. Then

Ef[ox,9(X)] =
k
=[] Bagta.x0) 90— 1) [T o — 6)ai ..
X2, Xk /X7 i=2
, . k
:/ / g(X'|7"'7Xk) '(—3x1§0(X1—91))~H¢(X;—9;)dx1...
X2,... Xk 4 X7 i=2
k
=/ g(x1,--- Xg) (X1 = 61)p(x1 - 61)- [T o(xi — 67)dlxs ...
X2,..Xk /X1 i=2

=E[(X1 —61)-9(X)].
e Collecting the componentsi=1,...,k yields

E[(X—6)-g(X)] = E[Vg(X)].

ka

ka

ka
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Stein’'s representation of risk

e Consider a general estimator for 6 of the form 6 = 6(X) = X +g(X), for
differentiable g.

e Recall that the risk function is defined as
ZE[ —6)%].
e \We will show that this risk function can be rewritten as

R(8,0) =k+ Y (Elgi(X)?2] + 2E[3,gi(X)]).

Practice problem

e Interpret this expression.

® Propose an unbiased estimator of risk, based on this expression.
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Answer

e The expression of risk has 3 components:
1. k is the risk of the canonical estimator @ = X, corresponding to g = 0.

2. YiE[gi(X)?] = ¥E[(6; — X;)?] is the sample sum of squared errors.
3. YE[dy,gi(X)] can be thought of as a penalty for overfitting.

e We thus can think of this expression as giving a “penalized least squares”
objective.

e The sample analog expression gives “Stein's Unbiased Risk Estimate” (SURE)

~ -~ 2
R=k+Y (8-X) +2- Y. xgi(X).
i i
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e We will use Stein’s representation of risk in 2 ways:
1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).

2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein’s representation of risk.
Hints:

e Add and subtract X; in the expression defining R(8, ).

e Use Stein’s lemma.
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Solution

Rw)ZZEK@—M+M—@ﬂ

ZZE[(X:'—QI)Z +(6 - X;)?
=) +E[gi(X)?]
=Y +E[gi(X)?]

where Stein's lemma was used in the last step.

+2(6,— X)) (Xi — )]
+2E(gi(X)- (Xi — 6;)]

+2E[9,9i(X)],
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Using SURE to pick the tuning parameter

e First use of SURE: To pick tuning parameters, as an alternative to
cross-validation or marginal likelihood maximization.

e Simple example: Linear shrinkage estimation

~

0=c-X.

Practice problem

e Calculate Stein's unbiased risk estimate for 8.

¢ Find the coefficient ¢ minimizing estimated risk.
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When 8 = c-X
theng(X)=6—-X=(c—1)-X,
and dygi(X) =c—1.
Estimated risk:
R=k+(1 Zx2+2k( 1).

FWstomkrcondMOnfornﬂmnﬂmngﬁz

k=(1-c")- Y X2
f
Thus
1
C _1—:
X2

Once again: Almost the JS estimator, up to degrees of freedom correction!
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Celebrated result: Dominance of the JS-estimator

e \We next use the population version of SURE to prove uniform dominance of the
JS-estimator relative to maximum likelihood.

e Recall that the James-Stein estimator was defined as

e Claim: The JS-estimator has uniformly lower risk than §ML =X

Practice problem

Prove this, using Stein's representation of risk.
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Solution
e Theriskof 8" is equal to k.

e For JS, we have

~JS k-2
gi(X)=6; —Xi= Y X2 - Xi, and
j
— 2
axigi(x) = kxz : <—1 + 2);2) .
Zj j Zj '
® Summing over components gives
k-2
Y gi(X)? = (ZXQ’ and
i j

e (k=2)?
;&@M%—Eﬁg-
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Solution continued

e Plugging into Stein’s expression for risk then gives

~JS
R(67,0) =k+E|Y gi(X)?+2Y 94 9i(X)
i i
_92)2 _9)2
=k+E (k 22) —2(k 22)
XX XX
_9)2
=k—E (k 22)
ZiX,'
e The term *=2) s always positive (for k > 3), and thus so is its expectation.

LiX?
Uniform dominance immediately follows.

e Pretty cool, no?
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The Normal means model as asymptotic approximation

e The Normal means model might seem quite special.
e But asymptotically, any sufficiently smooth parametric model is equivalent.
e Formally: The likelihood ratio process of ni.i.d. draws Y; from the distribution

Po+h/ i

converges to the likelihood ratio process of one draw X from

N (htg, )

® Here his a local parameter for the model around 6y, and Ig, is the Fisher
information matrix.
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e Suppose that Pg has a density fg relative to some measure.

e Recall the following definitions:
® | og-likelihood: £g(Y) = logfe(Y)

® Score: lg(Y) = dglogfy(Y)
* Hessian fg(Y) = 92 logfe(Y)
e Information matrix: Ig = Varg(¢¢(Y)) = —Eg[le(Y)]
e |ikelihood ratio process:
H f90+h/ﬁ(yi)
I foo(Yi) °

where Yq,..., Yy areiid. P90+h/ﬁ distributed.
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Practice problem (Taylor expansion)

e Using this notation, provide a second order Taylor expansion for the
log-likelihood £g,,n(Y) with respect to h.

® Provide a corresponding Taylor expansion for the log-likelihood of ni.i.d. draws
Y; from the distribution Py .1,/ /5.

e Assuming that the remainder is negligible, describe the limiting behavior (as
n — oo) of the log-likelihood ratio process

Fog+h/va(Yi)
log [ T =7 vy
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Solution
* Expansion for Lo, p(Y):
Cogrh(Y) = Loy (Y) +H Loy (Y)+ 3 -h-Lgy(Y) - h+remainder.
e Expansion for the log-likelihood ratio of ni.i.d. draws:

/ Y/
o H 9041::/(([ _ 1 h’ Zg Yi)+ Lh'- Zeeo(Y )-h+remainder.

e Asymptotic behavior (by CLT, LLN):
An =0 Zﬁeo 0 IQO)

2 'Zﬂeo ) =P —3le,.
I
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Suppose the remainder is negligible.

Then the previous slide suggests

lo H 90*”” =AN - A—Jhlgh,
where
A ~N(0,lg,).

Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for
this to hold.

We show next that this is the same likelihood ratio process as for the model

N (htg).
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Practice problem

e Suppose X ~ N (h,lg;)

e Write out the log likelihood ratio

(P, (X_h)

=1l
)

log —>———.
(plojg (X)
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Solution

e The Normal density is given by

1
@ (x) = 1 - exp (—%X’-lgo -X)
’ (2m)¥|det(ly, )|
e Taking ratios and logs yields
(pl(;1 (X - h)
log—>——— =h"lg,-x— %h’-le0 -h.

(P[oj(; (X)

* This is exactly the same process we obtained before, with Ig, - X taking the role
of A.
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Why care

e Suppose that Y; ~fd P n/ym @nd Tn(Ys,...,Yn) is an arbitrary statistic that
satisfies
Th—9Lgp

for some limiting distribution Ly 5 and all h.
* Then Ly is the distribution of some (possibly randomized) statistic T(X)!

e This is a (non-obvious) consequence of the convergence of the likelihood ratio
process.

e cf. Theorem 7.10 in van der Vaart (2000).
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Maximum likelihood and shrinkage

e This result applies in particular to T = estimators of 6.
e Suppose that ML is the maximum likelihood estimator.

e Then 8ML 9 X, and any shrinkage estimator based on 8 converges in
distribution to a corresponding shrinkage estimator in the limit experiment.

43/ 46



References

e Textbook introduction:

Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Busi-
ness Media, chapter 7.

® Reverse regression perspective:

Stigler, S. M. (1990). The 1988 Neyman memorial lecture: a Galtonian perspec-
tive on shrinkage estimators. Statistical Science, pages 147—-155.

44/ 46



e Parametric empirical Bayes:

Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and appli-
cations. Journal of the American Statistical Association, 78(381):pp. 47-55.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31.
Springer, section 4.6.

e Stein's Unbiased Risk Estimate:
Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution.
The Annals of Statistics, 9(6):1135-1151.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation, volume 31.
Springer, sections 5.2, 5.4, 5.5.

45/ 46



e The Normal means model as asymptotic approximation:

van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge University Press,
chapter 7.

Hansen, B. E. (2016). Efficient shrinkage in parametric models. Journal of Econo-
metrics, 190(1):115-132.

46/ 46



	The Normal means model
	Regression perspective
	Parametric empirical Bayes
	Stein's Unbiased Risk Estimate
	Local asymptotic Normality
	References

